Given an interval order on a topological space, we characterize its representability by means of a pair of upper semicontinuous real-valued functions. This characterization is only based on separability and continuity conditions related to both the interval order and one of its two traces. As a corollary, we obtain the classical Rader's theorem concerning the existence of an upper semicontinuous representation for an upper semicontinuous total preorder on a second countable topological space.

Upper semicontinuous representations of interval orders

BOSI, GIANNI;
2014

Abstract

Given an interval order on a topological space, we characterize its representability by means of a pair of upper semicontinuous real-valued functions. This characterization is only based on separability and continuity conditions related to both the interval order and one of its two traces. As a corollary, we obtain the classical Rader's theorem concerning the existence of an upper semicontinuous representation for an upper semicontinuous total preorder on a second countable topological space.
http://www.sciencedirect.com/science/article/pii/S0165489613001194
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2752308
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact