We study the standard model (SM) in its full perturbative validity range between ΛQCD and the U(1)Y Landau pole, assuming that a yet unknown gravitational theory in the UV does not introduce additional particle thresholds, as suggested by the tiny cosmological constant and the absence of new stabilizing physics at the electroweak scale. We find that, due to dimensional transmutation, the SM Higgs potential has a global minimum at 1026  GeV, invalidating the SM as a phenomenologically acceptable model in this energy range. We show that extending the classically scale invariant SM with one complex singlet scalar S allows us to (i) stabilize the SM Higgs potential, (ii) induce a scale in the singlet sector via dimensional transmutation that generates the negative SM Higgs mass term via the Higgs portal, (iii) provide a stable CP-odd singlet as the thermal relic dark matter due to CP-conservation of the scalar potential, and (iv) provide a degree of freedom that can act as an inflaton in the form of the CP-even singlet. The logarithmic behavior of dimensional transmutation allows one to accommodate the large hierarchy between the electroweak scale and the Landau pole, while understanding the latter requires a new nonperturbative view on the SM.

Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter

GABRIELLI, Emidio;
2014

Abstract

We study the standard model (SM) in its full perturbative validity range between ΛQCD and the U(1)Y Landau pole, assuming that a yet unknown gravitational theory in the UV does not introduce additional particle thresholds, as suggested by the tiny cosmological constant and the absence of new stabilizing physics at the electroweak scale. We find that, due to dimensional transmutation, the SM Higgs potential has a global minimum at 1026  GeV, invalidating the SM as a phenomenologically acceptable model in this energy range. We show that extending the classically scale invariant SM with one complex singlet scalar S allows us to (i) stabilize the SM Higgs potential, (ii) induce a scale in the singlet sector via dimensional transmutation that generates the negative SM Higgs mass term via the Higgs portal, (iii) provide a stable CP-odd singlet as the thermal relic dark matter due to CP-conservation of the scalar potential, and (iv) provide a degree of freedom that can act as an inflaton in the form of the CP-even singlet. The logarithmic behavior of dimensional transmutation allows one to accommodate the large hierarchy between the electroweak scale and the Landau pole, while understanding the latter requires a new nonperturbative view on the SM.
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.015017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2757356
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 150
  • ???jsp.display-item.citation.isi??? 147
social impact