AIMS: Only few preliminary experimental studies demonstrated the feasibility of adenosine stress CT myocardial perfusion imaging to calculate the absolute myocardial blood flow (MBF), thereby providing information whether a coronary stenosis is flow limiting. Therefore, the aim of our study was to determine whether adenosine stress myocardial perfusion imaging by Dual Source CT (DSCT) enables non-invasive quantification of regional MBF in an animal model with various degrees of coronary flow reduction. METHODS AND RESULTS: In seven pigs, a coronary flow probe and an adjustable hydraulic occluder were placed around the left anterior descending coronary artery to monitor the distal coronary artery blood flow (CBF) while several degrees of coronary flow reduction were induced. CT perfusion (CT-MBF) was acquired during adenosine stress with no CBF reduction, an intermediate (15-39%) and a severe (40-95%) CBF reduction. Reference standards were CBF and fractional flow reserve measurements (FFR). FFR was simultaneously derived from distal coronary artery pressure and aortic pressure measurements. CT-MBF decreased progressively with increasing CBF reduction severity from 2.68 (2.31-2.81)mL/g/min (normal CBF) to 1.96 (1.83-2.33) mL/g/min (intermediate CBF-reduction) and to 1.55 (1.14-2.06)mL/g/min (severe CBF-reduction) (both P < 0.001). We observed very good correlations between CT-MBF and CBF (r = 0.85, P < 0.001) and CT-MBF and FFR (r = 0.85, P < 0.001). CONCLUSION: Adenosine stress DSCT myocardial perfusion imaging allows quantification of regional MBF under various degrees of CBF reduction.

Quantification of myocardial blood flow by adenosine-stress CT perfusion imaging in pigs during various degrees of stenosis correlates well with coronary artery blood flow and fractional flow reserve.

ROSSI, ALEXIA;
2013-01-01

Abstract

AIMS: Only few preliminary experimental studies demonstrated the feasibility of adenosine stress CT myocardial perfusion imaging to calculate the absolute myocardial blood flow (MBF), thereby providing information whether a coronary stenosis is flow limiting. Therefore, the aim of our study was to determine whether adenosine stress myocardial perfusion imaging by Dual Source CT (DSCT) enables non-invasive quantification of regional MBF in an animal model with various degrees of coronary flow reduction. METHODS AND RESULTS: In seven pigs, a coronary flow probe and an adjustable hydraulic occluder were placed around the left anterior descending coronary artery to monitor the distal coronary artery blood flow (CBF) while several degrees of coronary flow reduction were induced. CT perfusion (CT-MBF) was acquired during adenosine stress with no CBF reduction, an intermediate (15-39%) and a severe (40-95%) CBF reduction. Reference standards were CBF and fractional flow reserve measurements (FFR). FFR was simultaneously derived from distal coronary artery pressure and aortic pressure measurements. CT-MBF decreased progressively with increasing CBF reduction severity from 2.68 (2.31-2.81)mL/g/min (normal CBF) to 1.96 (1.83-2.33) mL/g/min (intermediate CBF-reduction) and to 1.55 (1.14-2.06)mL/g/min (severe CBF-reduction) (both P < 0.001). We observed very good correlations between CT-MBF and CBF (r = 0.85, P < 0.001) and CT-MBF and FFR (r = 0.85, P < 0.001). CONCLUSION: Adenosine stress DSCT myocardial perfusion imaging allows quantification of regional MBF under various degrees of CBF reduction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2760778
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 54
social impact