Purpose: Biofilm formation on the surface of dental restorative materials by oral bacteria is considered an important step in the development of secondary caries. The aim of this study was to evaluate the in situ effect of a chlorhexidine (CHX)-containing mouthrinse on the biofilm formation occurring on the surface of human enamel and of two resin-based commercially available materials: a silorane-based material (Filtek Silorane®) and a methacrylate-based material (Filtek Supreme XT®). Methods: 53 disks were obtained for each of the two composites and 37 disks for enamel. The surface was characterized by determining the surface roughness and the surface free energy of 5 samples for each of the three materials tested, then the remaining samples were mounted on splints worn by 16 volunteers. The participants were randomly divided into two groups: an experimental group that used 0.12% CHX-based mouthrinse and a control group that used a placebo mouthrinse. Biofilm formation on the different surfaces after a 24 h period was assessed using MTT assay. Results: The two composites in the group treated with the placebo mouthrinse showed a similar biofilm formation, which was significantly higher than that occurring on enamel surfaces. The CHX-based mouthrinse significantly reduced biofilm formation on the surfaces of the two resin-based materials when compared with the placebo mouthrinse. The reduction was particularly relevant on the Filtek Silorane surfaces. Conclusions: The new silorane-based material seems to interact with CHX in a promising way from the point of view of biofilm formation control.

Biofilm formation on composite resins for dental restorations: an in situ study on the effect of chlorhexidine mouthrinses

IONESCU, ANDREI CRISTIAN;
2012

Abstract

Purpose: Biofilm formation on the surface of dental restorative materials by oral bacteria is considered an important step in the development of secondary caries. The aim of this study was to evaluate the in situ effect of a chlorhexidine (CHX)-containing mouthrinse on the biofilm formation occurring on the surface of human enamel and of two resin-based commercially available materials: a silorane-based material (Filtek Silorane®) and a methacrylate-based material (Filtek Supreme XT®). Methods: 53 disks were obtained for each of the two composites and 37 disks for enamel. The surface was characterized by determining the surface roughness and the surface free energy of 5 samples for each of the three materials tested, then the remaining samples were mounted on splints worn by 16 volunteers. The participants were randomly divided into two groups: an experimental group that used 0.12% CHX-based mouthrinse and a control group that used a placebo mouthrinse. Biofilm formation on the different surfaces after a 24 h period was assessed using MTT assay. Results: The two composites in the group treated with the placebo mouthrinse showed a similar biofilm formation, which was significantly higher than that occurring on enamel surfaces. The CHX-based mouthrinse significantly reduced biofilm formation on the surfaces of the two resin-based materials when compared with the placebo mouthrinse. The reduction was particularly relevant on the Filtek Silorane surfaces. Conclusions: The new silorane-based material seems to interact with CHX in a promising way from the point of view of biofilm formation control.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2761565
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact