We determined the effects of 24-h recombinant human growth hormone (rhGH) infusion into a femoral artery on leg muscle protein kinetics, amino acid transport, and glutamine metabolism in eight adult hypercatabolic trauma patients. Metabolic pathways were assessed by leg arteriovenous catheterization and muscle biopsies with the use of stable amino acid isotopes. Muscle mRNA levels of selected enzymes were determined by competitive PCR. rhGH infusion significantly accelerated the inward transport rates of phenylalanine and leucine and protein synthesis, whereas the muscle protein degradation rate and cathepsin B and UbB polyubiquitin mRNA levels were not significantly modified by rhGH. rhGH infusion decreased the rate of glutamine de novo synthesis and glutamine precursor availability, total branched-chain amino acid catabolism, and nonprotein glutamate utilization. Thus net glutamine release from muscle into circulation significantly decreased after rhGH administration ( approximately 50%), whereas glutamine synthetase mRNA levels increased after rhGH infusion, possibly to compensate for reduced glutamine precursor availability. We conclude that, after trauma, the anticatabolic action of rhGH is associated with a potentially harmful decrease in muscle glutamine production.

Growth hormone decreases muscle glutamine production and stimulates protein synthesis in hypercatabolic patients.

BIOLO, GIANNI;ISCRA, FULVIO;BOSUTTI, ALESSANDRA;TOIGO, GABRIELE;CIOCCHI, BENIAMINO;GEATTI, ONELIO;GULLO, ANTONINO;GUARNIERI, GIANFRANCO
2000

Abstract

We determined the effects of 24-h recombinant human growth hormone (rhGH) infusion into a femoral artery on leg muscle protein kinetics, amino acid transport, and glutamine metabolism in eight adult hypercatabolic trauma patients. Metabolic pathways were assessed by leg arteriovenous catheterization and muscle biopsies with the use of stable amino acid isotopes. Muscle mRNA levels of selected enzymes were determined by competitive PCR. rhGH infusion significantly accelerated the inward transport rates of phenylalanine and leucine and protein synthesis, whereas the muscle protein degradation rate and cathepsin B and UbB polyubiquitin mRNA levels were not significantly modified by rhGH. rhGH infusion decreased the rate of glutamine de novo synthesis and glutamine precursor availability, total branched-chain amino acid catabolism, and nonprotein glutamate utilization. Thus net glutamine release from muscle into circulation significantly decreased after rhGH administration ( approximately 50%), whereas glutamine synthetase mRNA levels increased after rhGH infusion, possibly to compensate for reduced glutamine precursor availability. We conclude that, after trauma, the anticatabolic action of rhGH is associated with a potentially harmful decrease in muscle glutamine production.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2763664
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 61
  • ???jsp.display-item.citation.isi??? ND
social impact