In the last few decades, multiple H-bonded arrays have been shown to be versatile tools to prepare functional supramolecular materials. Supramolecular complexes formed by uracil (Ur) and 2,6-diamidopyridine (DAP) developed by Lehn are the first examples of multiple H-bonded systems governing the formation of supramolecular polymers in solution. Although a large variety of complementary multiple H-bonded complexes has been prepared, the use of the heteromolecular Ur.DAP complex still remains very promising due to its ease of preparation and its intermediate association strength that ensures a dynamical character to the self-assembly and self-organisation processes. In this feature article, we report a detailed account on the results that our group has obtained in this field by designing and engineering a novel library of shape persistent molecular modules able to transfer their geometrical information to the final supramolecular architectures through the formation of Ur.DAP complexes both at the nanoscopic and microscopic levels.

Nano- and microstructuration of supramolecular materials driven by H-bonded uracil.2,6-diamidopyridine complexes

MARANGONI, TOMAS;BONIFAZI, DAVIDE
2013-01-01

Abstract

In the last few decades, multiple H-bonded arrays have been shown to be versatile tools to prepare functional supramolecular materials. Supramolecular complexes formed by uracil (Ur) and 2,6-diamidopyridine (DAP) developed by Lehn are the first examples of multiple H-bonded systems governing the formation of supramolecular polymers in solution. Although a large variety of complementary multiple H-bonded complexes has been prepared, the use of the heteromolecular Ur.DAP complex still remains very promising due to its ease of preparation and its intermediate association strength that ensures a dynamical character to the self-assembly and self-organisation processes. In this feature article, we report a detailed account on the results that our group has obtained in this field by designing and engineering a novel library of shape persistent molecular modules able to transfer their geometrical information to the final supramolecular architectures through the formation of Ur.DAP complexes both at the nanoscopic and microscopic levels.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2768364
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact