Geochemical investigations were carried out to define the origin of the low- to moderate-temperature thermal waters feeding the Monfalcone springs in northern Italy. Chemical data indicate that waters approach the composition of seawater. Mixing processes with cold low salinity waters are highlighted. The δ18O and δD values are in the range −5.0 to −6.4 ‰, and −33 to −40 ‰, respectively, suggesting the dilution of the saline reservoir by karst-type freshwaters. A surplus of Ca2+ and Sr2+ ions with respect to a conservative mixing is ascribed to diagenetic reactions of the thermal waters with Cretaceous carbonates at depth. The measured Sr isotopic composition (87Sr/86Sr ratio) ranges between 0.70803 and 0.70814; after correction for the surplus Sr, a 87Sr/86Sr ratio indicating Miocene paleo-seawater is obtained. The dissolved gases indicate long-lasting gas–water interactions with a deep-originated gas phase of crustal origin, dominated by CO2 and marked by a water TDIC isotopic composition in the range −5.9 to−8.8 and helium signature with 0.08<R/ Ra<0.27, which is a typical range for the crust. A possible scenario for the Monfalcone thermal reservoir consists of Miocene marine paleowaters which infiltrated through the karstic voids formed within the prevalently Cretaceous carbonates during the upper Eocene emersion of the platform, and which were entrapped by the progressive burial by terrigenous sediments.

Geochemistry and isotope geochemistry of the Monfalcone thermal waters (northern Italy): inference on the deep geothermal reservoir

PONTON, MAURIZIO;ZINI, Luca
2013-01-01

Abstract

Geochemical investigations were carried out to define the origin of the low- to moderate-temperature thermal waters feeding the Monfalcone springs in northern Italy. Chemical data indicate that waters approach the composition of seawater. Mixing processes with cold low salinity waters are highlighted. The δ18O and δD values are in the range −5.0 to −6.4 ‰, and −33 to −40 ‰, respectively, suggesting the dilution of the saline reservoir by karst-type freshwaters. A surplus of Ca2+ and Sr2+ ions with respect to a conservative mixing is ascribed to diagenetic reactions of the thermal waters with Cretaceous carbonates at depth. The measured Sr isotopic composition (87Sr/86Sr ratio) ranges between 0.70803 and 0.70814; after correction for the surplus Sr, a 87Sr/86Sr ratio indicating Miocene paleo-seawater is obtained. The dissolved gases indicate long-lasting gas–water interactions with a deep-originated gas phase of crustal origin, dominated by CO2 and marked by a water TDIC isotopic composition in the range −5.9 to−8.8 and helium signature with 0.08
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2769634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact