We study analytic aspects of U(n) gauge theory over a toric noncommutative manifold. We analyse moduli spaces of solutions to the self- dual Yang–Mills equations on U(2) vector bundles over four-manifolds, showing that each such moduli space is either empty or a smooth Hausdorff manifold whose dimension we explicitly compute. In the spe- cial case of the four-sphere Sθ4 we find that the moduli space of U(2) instantons with fixed second Chern number k is a smooth manifold of dimension 8k − 3.

Moduli spaces of instantons on toric noncommutative manifolds

LANDI, GIOVANNI;
2013-01-01

Abstract

We study analytic aspects of U(n) gauge theory over a toric noncommutative manifold. We analyse moduli spaces of solutions to the self- dual Yang–Mills equations on U(2) vector bundles over four-manifolds, showing that each such moduli space is either empty or a smooth Hausdorff manifold whose dimension we explicitly compute. In the spe- cial case of the four-sphere Sθ4 we find that the moduli space of U(2) instantons with fixed second Chern number k is a smooth manifold of dimension 8k − 3.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2776924
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact