We present a procedure for clustering time series according to their tail dependence behaviour as measured via a suitable copula-based tail coefficient, estimated in a non-parametric way. Simulation results about the proposed methodology together with an application to financial data are presented showing the usefulness of the proposed approach.
Clustering of time series via non-parametric tail dependence estimation
PAPPADA' , ROBERTA;TORELLI, Nicola
2015-01-01
Abstract
We present a procedure for clustering time series according to their tail dependence behaviour as measured via a suitable copula-based tail coefficient, estimated in a non-parametric way. Simulation results about the proposed methodology together with an application to financial data are presented showing the usefulness of the proposed approach.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
art%3A10.1007%2Fs00362-014-0605-7.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
619.93 kB
Formato
Adobe PDF
|
619.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2787726_art_10.1007_s00362-014-0605-7-PostPrint.pdf
accesso aperto
Descrizione: PostPrint VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
930.29 kB
Formato
Adobe PDF
|
930.29 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.