In this paper we study, for some subsets I of N^{∗}, the Banach space E of bounded real sequences {x_{n}}_{n∈I}. For any integer k, we introduce a measure over (E,B(E)) that generalizes the k-dimensional Lebesgue measure; consequently, also a theory of integration is defined. The main result of our paper is a change of variables formula for the integration.

Integration over an Infinite-Dimensional Banach Space and Probabilistic Applications

ASCI, CLAUDIO
2014-01-01

Abstract

In this paper we study, for some subsets I of N^{∗}, the Banach space E of bounded real sequences {x_{n}}_{n∈I}. For any integer k, we introduce a measure over (E,B(E)) that generalizes the k-dimensional Lebesgue measure; consequently, also a theory of integration is defined. The main result of our paper is a change of variables formula for the integration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2788325
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact