In this paper we study, for some subsets I of N^{∗}, the Banach space E of bounded real sequences {x_{n}}_{n∈I}. For any integer k, we introduce a measure over (E,B(E)) that generalizes the k-dimensional Lebesgue measure; consequently, also a theory of integration is defined. The main result of our paper is a change of variables formula for the integration.
Titolo: | Integration over an Infinite-Dimensional Banach Space and Probabilistic Applications |
Autori: | |
Data di pubblicazione: | 2014 |
Rivista: | |
Abstract: | In this paper we study, for some subsets I of N^{∗}, the Banach space E of bounded real sequences {x_{n}}_{n∈I}. For any integer k, we introduce a measure over (E,B(E)) that generalizes the k-dimensional Lebesgue measure; consequently, also a theory of integration is defined. The main result of our paper is a change of variables formula for the integration. |
Handle: | http://hdl.handle.net/11368/2788325 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1155/2014/404186 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.