We prove that total monotonicity of monotone measures is a sufficient (but not necessary) condition for T-supermodularity of Choquet integral. Moreover, we show that total monotonicity does not imply, in general, supermodularity of the integral, when we consider the symmetric Choquet integral or the Sugeno integral. Finally, we also prove that, for the Choquet integral, T-supermodularity implies supermodularity, when T is the product t-norm, and it is equivalent to supermodularity, when T is the Luckasiewicz t-norm.

Some remarks on T-supermodularity of Choquet integral

HOLZER, SILVANO;
2014-01-01

Abstract

We prove that total monotonicity of monotone measures is a sufficient (but not necessary) condition for T-supermodularity of Choquet integral. Moreover, we show that total monotonicity does not imply, in general, supermodularity of the integral, when we consider the symmetric Choquet integral or the Sugeno integral. Finally, we also prove that, for the Choquet integral, T-supermodularity implies supermodularity, when T is the product t-norm, and it is equivalent to supermodularity, when T is the Luckasiewicz t-norm.
File in questo prodotto:
File Dimensione Formato  
Some remarks on T-supermodularity of Choquet integral.pdf

Accesso chiuso

Descrizione: pdf editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 255.9 kB
Formato Adobe PDF
255.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2797528
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact