Four new dicopper(II) complexes of phenol based compartmental ligands, namely [Cu2(L1H)2(H2O)2(NO3)2] (NO3)2 (1), [Cu2(L2)(OH)(H2O)(NO3)](NO3) (2), [Cu2(L3)2(H2O)(NO3)](NO3) (3) and [Cu2(L4)(H2O)2(NO3)] (NO3)2 (4) [where L1 = 2-formyl-4-methyl-6-(4-(aminomethyl)-piperidine)iminomethyl-phenolato, L2 = 2,6-bis(2-amino-2-methyl-1-propanol)iminomethyl-4-methyl-phenolato, L3 = 2-formyl-4-methyl- 6-(benzylamine) iminomethyl-phenolato and L4 = 2,6-bis(2-aminoethylpyridine)iminomethyl-4-methyl-phenolato] have been synthesized and structurally characterized. The single crystal X-ray analyses reveal that all four complexes are dinuclear in nature; complexes 2 and 4 comprise of one respective ligand, whereas 1 and 3 are contain two respective ligands, and the Cu–Cu separation in each case is ca. 3.0 Å. All four complexes are soluble in dichloromethane (DCM), methanol, acetonitrile (ACN), dimethylsulfoxide (DMSO), water–methanol (50:50, v/v), and this property has been exploited to access the solvent effect on the catecholase activity of the complexes towards the aerobic oxidation of 3,5-DTBC to 3,5-DTBQ. A UV–Vis spectral study in the different solvents, followed by a kinetic investigation, suggests that the change in spectral behavior follows a similar trend, being dependent on the coordinating ability of the solvent, irrespective of the complex used. The commonly known physical parameters of the solvents, like the dielectric constant, dipole moment, polarity, etc., do not seem to be a key factor in controlling the catecholase activity. However, protic solvents are observed to be a better choice than aprotic solvents for the oxidation of 3,5-DTBC.

Dinuclear copper(II) complexes: Solvent dependent catecholase activity

ZANGRANDO, ENNIO;
2012

Abstract

Four new dicopper(II) complexes of phenol based compartmental ligands, namely [Cu2(L1H)2(H2O)2(NO3)2] (NO3)2 (1), [Cu2(L2)(OH)(H2O)(NO3)](NO3) (2), [Cu2(L3)2(H2O)(NO3)](NO3) (3) and [Cu2(L4)(H2O)2(NO3)] (NO3)2 (4) [where L1 = 2-formyl-4-methyl-6-(4-(aminomethyl)-piperidine)iminomethyl-phenolato, L2 = 2,6-bis(2-amino-2-methyl-1-propanol)iminomethyl-4-methyl-phenolato, L3 = 2-formyl-4-methyl- 6-(benzylamine) iminomethyl-phenolato and L4 = 2,6-bis(2-aminoethylpyridine)iminomethyl-4-methyl-phenolato] have been synthesized and structurally characterized. The single crystal X-ray analyses reveal that all four complexes are dinuclear in nature; complexes 2 and 4 comprise of one respective ligand, whereas 1 and 3 are contain two respective ligands, and the Cu–Cu separation in each case is ca. 3.0 Å. All four complexes are soluble in dichloromethane (DCM), methanol, acetonitrile (ACN), dimethylsulfoxide (DMSO), water–methanol (50:50, v/v), and this property has been exploited to access the solvent effect on the catecholase activity of the complexes towards the aerobic oxidation of 3,5-DTBC to 3,5-DTBQ. A UV–Vis spectral study in the different solvents, followed by a kinetic investigation, suggests that the change in spectral behavior follows a similar trend, being dependent on the coordinating ability of the solvent, irrespective of the complex used. The commonly known physical parameters of the solvents, like the dielectric constant, dipole moment, polarity, etc., do not seem to be a key factor in controlling the catecholase activity. However, protic solvents are observed to be a better choice than aprotic solvents for the oxidation of 3,5-DTBC.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2829743
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact