Hereditary Multiple Exostoses (HME) is an autosomal-dominant disorder characterized by benign cartilage tumors (exostoses) forming near the growth plates, leading to severe health problems. EXT1 and EXT2 are the two genes known to harbor heterozygous loss-of-function mutations that account for the vast majority of the primary genetic component of HME. However, patients present with wide clinical heterogeneity, suggesting that modifier genes play a role in determining severity. Our previous work has pointed to an imbalance of β-catenin signaling being involved in the pathogenesis of osteochondroma formation. TCF7L2 is one of the key 'gate-keeper' TCF family members for Wnt/β-catenin signaling pathway, and TCF7L2 and EXT2 are among the earliest associated loci reported in genome wide appraisals of type 2 diabetes (T2D). Thus we investigated if the key T allele of single nucleotide polymorphism (SNP) rs7903146 within the TCF7L2 locus, which is strongly over-represented among T2D cases, was also associated with HME. We leveraged genotype data available from ongoing GWAS efforts from genomics and orthopedic centers in the US, Canada and Italy. Collectively 213 cases and 1890 controls were analyzed and, surprisingly, the T allele was in fact significantly under-represented in the HME patient group [P=0.009; odds ratio=0.737 (95% C.I. 0.587-0.926)]; in addition, the direction of effect was consistent within each individual cohort. Immunohistochemical analyses revealed that TCF7L2 is differentially expressed and distributed in normal human growth plate zones, and exhibits substantial variability in human exostoses in terms of staining intensity and distribution. In summary, the data indicate that there is a putative genetic connection between TCF7L2 and EXT in the context of HME. Given this observation, we suggest that these loci could possibly modulate shared pathways, in particular with respect to β-catenin, and their respective variants interplay to influence HME pathogenesis as well as T2D.

The type 2 diabetes associated rs7903146 T allele within TCF7L2 is significantly under-represented in Hereditary Multiple Exostoses: Insights into pathogenesis

D'ADAMO, ADAMO PIO;
2015-01-01

Abstract

Hereditary Multiple Exostoses (HME) is an autosomal-dominant disorder characterized by benign cartilage tumors (exostoses) forming near the growth plates, leading to severe health problems. EXT1 and EXT2 are the two genes known to harbor heterozygous loss-of-function mutations that account for the vast majority of the primary genetic component of HME. However, patients present with wide clinical heterogeneity, suggesting that modifier genes play a role in determining severity. Our previous work has pointed to an imbalance of β-catenin signaling being involved in the pathogenesis of osteochondroma formation. TCF7L2 is one of the key 'gate-keeper' TCF family members for Wnt/β-catenin signaling pathway, and TCF7L2 and EXT2 are among the earliest associated loci reported in genome wide appraisals of type 2 diabetes (T2D). Thus we investigated if the key T allele of single nucleotide polymorphism (SNP) rs7903146 within the TCF7L2 locus, which is strongly over-represented among T2D cases, was also associated with HME. We leveraged genotype data available from ongoing GWAS efforts from genomics and orthopedic centers in the US, Canada and Italy. Collectively 213 cases and 1890 controls were analyzed and, surprisingly, the T allele was in fact significantly under-represented in the HME patient group [P=0.009; odds ratio=0.737 (95% C.I. 0.587-0.926)]; in addition, the direction of effect was consistent within each individual cohort. Immunohistochemical analyses revealed that TCF7L2 is differentially expressed and distributed in normal human growth plate zones, and exhibits substantial variability in human exostoses in terms of staining intensity and distribution. In summary, the data indicate that there is a putative genetic connection between TCF7L2 and EXT in the context of HME. Given this observation, we suggest that these loci could possibly modulate shared pathways, in particular with respect to β-catenin, and their respective variants interplay to influence HME pathogenesis as well as T2D.
File in questo prodotto:
File Dimensione Formato  
type 2 diabetes.pdf

Accesso chiuso

Descrizione: pdf editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 767.05 kB
Formato Adobe PDF
767.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2829773
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact