We consider planar $\sigma$-harmonic mappings, that is mappings $U$ whose components $u^1$ and $u^2$ solve a divergence structure elliptic equation ${\rm div} (\sigma \nabla u^i)=0$, for $i=1,2$. We investigate whether a locally invertible $ \sigma$-harmonic mapping $U$ is also quasiconformal. Under mild regularity assumptions, only involving $\det \sigma$ and the antisymmetric part of $\sigma$, we prove quantitative bounds which imply quasiconformality.

Estimates for the dilatation of $\sigma$-harmonic mappings

ALESSANDRINI, GIOVANNI;
2014

Abstract

We consider planar $\sigma$-harmonic mappings, that is mappings $U$ whose components $u^1$ and $u^2$ solve a divergence structure elliptic equation ${\rm div} (\sigma \nabla u^i)=0$, for $i=1,2$. We investigate whether a locally invertible $ \sigma$-harmonic mapping $U$ is also quasiconformal. Under mild regularity assumptions, only involving $\det \sigma$ and the antisymmetric part of $\sigma$, we prove quantitative bounds which imply quasiconformality.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2830483
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact