We consider planar $\sigma$-harmonic mappings, that is mappings $U$ whose components $u^1$ and $u^2$ solve a divergence structure elliptic equation ${\rm div} (\sigma \nabla u^i)=0$, for $i=1,2$. We investigate whether a locally invertible $ \sigma$-harmonic mapping $U$ is also quasiconformal. Under mild regularity assumptions, only involving $\det \sigma$ and the antisymmetric part of $\sigma$, we prove quantitative bounds which imply quasiconformality.
Titolo: | Estimates for the dilatation of $\sigma$-harmonic mappings | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Rivista: | ||
Abstract: | We consider planar $\sigma$-harmonic mappings, that is mappings $U$ whose components $u^1$ and $u^2$ solve a divergence structure elliptic equation ${\rm div} (\sigma \nabla u^i)=0$, for $i=1,2$. We investigate whether a locally invertible $ \sigma$-harmonic mapping $U$ is also quasiconformal. Under mild regularity assumptions, only involving $\det \sigma$ and the antisymmetric part of $\sigma$, we prove quantitative bounds which imply quasiconformality. | |
Handle: | http://hdl.handle.net/11368/2830483 | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.