Wu’s list decoding algorithm, when restricted to binary codes, allows decoding up to the binary Johnson bound. Unfortunately, in the vast majority of cases, this bound is not capable to reach the covering radius R of the code, and this implies that some n-tuples do exist that are not list decodable. Nevertheless we prove that a class of Reed-Muller codes it exists, for which the decoding radius Tau_wu is greater than or equal to the covering radius. This situation is the list decoding counterpart of perfect codes.

Binary List Decoding Beyond Covering Radius

BARDELLOTTO, ERIKA;FABRIS, FRANCESCO
2014

Abstract

Wu’s list decoding algorithm, when restricted to binary codes, allows decoding up to the binary Johnson bound. Unfortunately, in the vast majority of cases, this bound is not capable to reach the covering radius R of the code, and this implies that some n-tuples do exist that are not list decodable. Nevertheless we prove that a class of Reed-Muller codes it exists, for which the decoding radius Tau_wu is greater than or equal to the covering radius. This situation is the list decoding counterpart of perfect codes.
http://www.tandfonline.com/doi/abs/10.1080/02522667.2014.968380#.VMikmWTF98s
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2830687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact