In this work we present an improvement of Del Santo and Prizzi (2009), where the authors proved a result concerning continuous dependence for backward-parabolic operators whose coefficients are Log-Lipschitz in tt and C^2 in x. In that paper, the C^2 regularity with respect to x had to be assumed for technical reasons: here we remove this assumption, replacing it with Lipschitz-continuity. The main tools in the proof are Littlewood–Paley theory and Bony’s paraproduct.

Conditional stability for backward parabolic equations with LogLip_txLip_x-coefficients

DEL SANTO, DANIELE;PRIZZI, Martino
2015-01-01

Abstract

In this work we present an improvement of Del Santo and Prizzi (2009), where the authors proved a result concerning continuous dependence for backward-parabolic operators whose coefficients are Log-Lipschitz in tt and C^2 in x. In that paper, the C^2 regularity with respect to x had to be assumed for technical reasons: here we remove this assumption, replacing it with Lipschitz-continuity. The main tools in the proof are Littlewood–Paley theory and Bony’s paraproduct.
File in questo prodotto:
File Dimensione Formato  
ds-j-pr.pdf

Accesso chiuso

Descrizione: online first article
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 461.4 kB
Formato Adobe PDF
461.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
conditional stability.pdf

Accesso chiuso

Descrizione: pdf editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 506.5 kB
Formato Adobe PDF
506.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2830720_conditional stability-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 978.18 kB
Formato Adobe PDF
978.18 kB Adobe PDF Visualizza/Apri
2830720_ds-j-pr-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Licenza: Digital Rights Management non definito
Dimensione 986.23 kB
Formato Adobe PDF
986.23 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2830720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact