In this work we present an improvement of Del Santo and Prizzi (2009), where the authors proved a result concerning continuous dependence for backward-parabolic operators whose coefficients are Log-Lipschitz in tt and C^2 in x. In that paper, the C^2 regularity with respect to x had to be assumed for technical reasons: here we remove this assumption, replacing it with Lipschitz-continuity. The main tools in the proof are Littlewood–Paley theory and Bony’s paraproduct.
Conditional stability for backward parabolic equations with LogLip_txLip_x-coefficients
DEL SANTO, DANIELE;PRIZZI, Martino
2015-01-01
Abstract
In this work we present an improvement of Del Santo and Prizzi (2009), where the authors proved a result concerning continuous dependence for backward-parabolic operators whose coefficients are Log-Lipschitz in tt and C^2 in x. In that paper, the C^2 regularity with respect to x had to be assumed for technical reasons: here we remove this assumption, replacing it with Lipschitz-continuity. The main tools in the proof are Littlewood–Paley theory and Bony’s paraproduct.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ds-j-pr.pdf
Accesso chiuso
Descrizione: online first article
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
461.4 kB
Formato
Adobe PDF
|
461.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
conditional stability.pdf
Accesso chiuso
Descrizione: pdf editoriale
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
506.5 kB
Formato
Adobe PDF
|
506.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2830720_conditional stability-PostPrint.pdf
accesso aperto
Descrizione: Post Print VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
978.18 kB
Formato
Adobe PDF
|
978.18 kB | Adobe PDF | Visualizza/Apri |
2830720_ds-j-pr-PostPrint.pdf
accesso aperto
Descrizione: Post Print VQR3
Licenza:
Digital Rights Management non definito
Dimensione
986.23 kB
Formato
Adobe PDF
|
986.23 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.