We study the existence of subharmonic solutions of the prescribed curvature equation \begin{equation*} -\Big( u'/{ \sqrt{1+{u'}^2}}\Big)' = f(t,u). \end{equation*} According to the behaviour at zero, or at infinity, of the prescribed curvature $f$, we prove the existence of arbitrarily small classical subharmonic solutions, or bounded variation subharmonic solutions with arbitrarily large oscillations.
Subharmonic solutions of the prescribed curvature equation
CORSATO, CHIARA;OMARI, PIERPAOLO;
2016-01-01
Abstract
We study the existence of subharmonic solutions of the prescribed curvature equation \begin{equation*} -\Big( u'/{ \sqrt{1+{u'}^2}}\Big)' = f(t,u). \end{equation*} According to the behaviour at zero, or at infinity, of the prescribed curvature $f$, we prove the existence of arbitrarily small classical subharmonic solutions, or bounded variation subharmonic solutions with arbitrarily large oscillations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CCM_COZ Post.pdf
Open Access dal 15/05/2016
Descrizione: Post print
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
448.84 kB
Formato
Adobe PDF
|
448.84 kB | Adobe PDF | Visualizza/Apri |
COZ CCM 2016.pdf
Accesso chiuso
Descrizione: Versione editoriale a stampa
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
486.92 kB
Formato
Adobe PDF
|
486.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.