We study the existence of subharmonic solutions of the prescribed curvature equation \begin{equation*} -\Big( u'/{ \sqrt{1+{u'}^2}}\Big)' = f(t,u). \end{equation*} According to the behaviour at zero, or at infinity, of the prescribed curvature $f$, we prove the existence of arbitrarily small classical subharmonic solutions, or bounded variation subharmonic solutions with arbitrarily large oscillations.
Titolo: | Subharmonic solutions of the prescribed curvature equation | |
Autori: | ||
Data di pubblicazione: | 2016 | |
Rivista: | ||
Abstract: | We study the existence of subharmonic solutions of the prescribed curvature equation \begin{equation*} -\Big( u'/{ \sqrt{1+{u'}^2}}\Big)' = f(t,u). \end{equation*} According to the behaviour at zero, or at infinity, of the prescribed curvature $f$, we prove the existence of arbitrarily small classical subharmonic solutions, or bounded variation subharmonic solutions with arbitrarily large oscillations. | |
Handle: | http://hdl.handle.net/11368/2830905 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1142/S021919971550042X | |
URL: | http://www.worldscientific.com/doi/10.1142/S021919971550042X | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
CCM_COZ Post.pdf | Post print | Bozza finale post-referaggio (post-print) | ![]() | Open Access Visualizza/Apri |
COZ CCM 2016.pdf | Versione editoriale a stampa | Documento in Versione Editoriale | Digital Rights Management non definito | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.