We study the existence of subharmonic solutions of the prescribed curvature equation \begin{equation*} -\Big( u'/{ \sqrt{1+{u'}^2}}\Big)' = f(t,u). \end{equation*} According to the behaviour at zero, or at infinity, of the prescribed curvature $f$, we prove the existence of arbitrarily small classical subharmonic solutions, or bounded variation subharmonic solutions with arbitrarily large oscillations.

Subharmonic solutions of the prescribed curvature equation

CORSATO, CHIARA;OMARI, PIERPAOLO;
2016-01-01

Abstract

We study the existence of subharmonic solutions of the prescribed curvature equation \begin{equation*} -\Big( u'/{ \sqrt{1+{u'}^2}}\Big)' = f(t,u). \end{equation*} According to the behaviour at zero, or at infinity, of the prescribed curvature $f$, we prove the existence of arbitrarily small classical subharmonic solutions, or bounded variation subharmonic solutions with arbitrarily large oscillations.
File in questo prodotto:
File Dimensione Formato  
CCM_COZ Post.pdf

Open Access dal 15/05/2016

Descrizione: Post print
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 448.84 kB
Formato Adobe PDF
448.84 kB Adobe PDF Visualizza/Apri
COZ CCM 2016.pdf

Accesso chiuso

Descrizione: Versione editoriale a stampa
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 486.92 kB
Formato Adobe PDF
486.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2830905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact