By using the quantum maximum entropy principle we formally derive, from a underlying kinetic description, isothermal (hydrodynamic and diffusive) quantum fluid equations for particles with Fermi-Dirac and Bose-Einstein statistics. A semiclassical expansion of the quantum fluid equations, up to -terms, leads to classical fluid equations with statistics-dependent quantum corrections, including a modified Bohm potential. The Maxwell-Boltzmann limit and the zero temperature limit are eventually discussed.

Derivation of Isothermal Quantum Fluid Equations with Fermi-Dirac and Bose-Einstein Statistics

CINTOLESI, CARLO
2012-01-01

Abstract

By using the quantum maximum entropy principle we formally derive, from a underlying kinetic description, isothermal (hydrodynamic and diffusive) quantum fluid equations for particles with Fermi-Dirac and Bose-Einstein statistics. A semiclassical expansion of the quantum fluid equations, up to -terms, leads to classical fluid equations with statistics-dependent quantum corrections, including a modified Bohm potential. The Maxwell-Boltzmann limit and the zero temperature limit are eventually discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2831096
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact