In order to assess the seasonal changes of the topography, the inner structure and the physical properties of a small glacier in the Eastern Alps, we performed a 4-D multi frequency GPR survey by repeating the same data acquisition in four different periods of the year 2013. The usual glacier mass balance estimation encompasses only topographic variations, but the real evolution is much more complex and includes surface melting and refreezing, snow metamorphism, and basal melting. We analyzed changes in both the imaged geometrical morphological structures and the densities, estimated from GPR data inversion. The inversion algorithm uses reflection amplitudes and traveltimes to extract the electromagnetic velocities in the interpreted layers and the densities of the frozen materials through empirical relations. The obtained results have been compared and validated with direct measures like snow thickness surveys, density logs within snow pits and ablation stakes. This study demonstrates that GPR techniques are a fast and effective tool not only for glacial qualitative studies, but also for detailed glacier monitoring and accurate quantitative analyses of crucial glaciological parameters like density distribution and water runoff.

4-D quantitative GPR analyses to study the summer mass balance of a glacier: A case history

FORTE, Emanuele;DOSSI, MATTEO;
2014-01-01

Abstract

In order to assess the seasonal changes of the topography, the inner structure and the physical properties of a small glacier in the Eastern Alps, we performed a 4-D multi frequency GPR survey by repeating the same data acquisition in four different periods of the year 2013. The usual glacier mass balance estimation encompasses only topographic variations, but the real evolution is much more complex and includes surface melting and refreezing, snow metamorphism, and basal melting. We analyzed changes in both the imaged geometrical morphological structures and the densities, estimated from GPR data inversion. The inversion algorithm uses reflection amplitudes and traveltimes to extract the electromagnetic velocities in the interpreted layers and the densities of the frozen materials through empirical relations. The obtained results have been compared and validated with direct measures like snow thickness surveys, density logs within snow pits and ablation stakes. This study demonstrates that GPR techniques are a fast and effective tool not only for glacial qualitative studies, but also for detailed glacier monitoring and accurate quantitative analyses of crucial glaciological parameters like density distribution and water runoff.
2014
978-1-4799-6789-6
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6970444&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6962870%2F6970371%2F06970444.pdf%3Farnumber%3D6970444
File in questo prodotto:
File Dimensione Formato  
FORTE_et_al_PER_ARTS.pdf

Accesso chiuso

Descrizione: Extended Abstract
Tipologia: Documento in Pre-print
Licenza: Digital Rights Management non definito
Dimensione 2.51 MB
Formato Adobe PDF
2.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
4-DquantitativeGPR-Editoriale.pdf

Accesso chiuso

Descrizione: Versione Editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2831224
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 6
social impact