Due to their typical high slenderness ratios, glass structural elements can be often subjected to buckling phenomena. Major difficulties in a correct estimation of their effective buckling strength and load-carrying behavior are generally given by a combination of multiple mechanical and geometrical aspects, especially in presence of laminated cross sections or interacting applied loads. In this paper, buckling experiments are performed on laminated glass beam-columns eccentrically compressed. Extended numerical and analytical comparisons are performed with test results in terms of Euler’s critical loads or load-displacement paths. As shown, appropriate calibration of numerical and analytical models generally can provide good agreement between buckling predictions and experimental results. Viscoelastic numerical models, in particular, if well-calibrated in terms of mechanical [e.g., creep effects in polyvinyl butyral (PVB)–foils] and geometrical properties (e.g., initial imperfections, load eccentricities) can provide interesting correlation with experiments, both in the form of global load-carrying behavior and ultimate loads. At the same time, simplified analytical methods based on the equivalent thickness concept can be used for rational analytical predictions—although in well-defined load-time and temperature conditions—and simplified buckling verification procedures.
Titolo: | Flexural-torsional buckling behavior of eccentrically compressed laminated glass elements with viscoelastic PVB interlayer | |
Autori: | ||
Data di pubblicazione: | 2015 | |
Data ahead of print: | 1-feb-2014 | |
Stato di pubblicazione: | Pubblicato | |
Rivista: | ||
Abstract: | Due to their typical high slenderness ratios, glass structural elements can be often subjected to buckling phenomena. Major difficulties in a correct estimation of their effective buckling strength and load-carrying behavior are generally given by a combination of multiple mechanical and geometrical aspects, especially in presence of laminated cross sections or interacting applied loads. In this paper, buckling experiments are performed on laminated glass beam-columns eccentrically compressed. Extended numerical and analytical comparisons are performed with test results in terms of Euler’s critical loads or load-displacement paths. As shown, appropriate calibration of numerical and analytical models generally can provide good agreement between buckling predictions and experimental results. Viscoelastic numerical models, in particular, if well-calibrated in terms of mechanical [e.g., creep effects in polyvinyl butyral (PVB)–foils] and geometrical properties (e.g., initial imperfections, load eccentricities) can provide interesting correlation with experiments, both in the form of global load-carrying behavior and ultimate loads. At the same time, simplified analytical methods based on the equivalent thickness concept can be used for rational analytical predictions—although in well-defined load-time and temperature conditions—and simplified buckling verification procedures. | |
Handle: | http://hdl.handle.net/11368/2831643 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001128 | |
URL: | http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ST.1943-541X.0001128 | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Bedon--compressed.pdf | Documento in Versione Editoriale | Digital Rights Management non definito | Administrator Richiedi una copia |