By a classical result of Jordan each finite subgroup of a complex linear group GL_n(C) has an abelian normal subgroup whose index is bounded by a constant depending only on n. It has been asked whether this remains true for finite subgroups of the diffeomorphism group Diff(M) of every compact manifold M; in the present paper, using the geometrization of 3-manifolds, we prove it for compact 3-manifolds M.

On Jordan type bounds for finite groups acting on compact 3-manifolds

ZIMMERMANN, BRUNO
2014-01-01

Abstract

By a classical result of Jordan each finite subgroup of a complex linear group GL_n(C) has an abelian normal subgroup whose index is bounded by a constant depending only on n. It has been asked whether this remains true for finite subgroups of the diffeomorphism group Diff(M) of every compact manifold M; in the present paper, using the geometrization of 3-manifolds, we prove it for compact 3-manifolds M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2834067
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact