Let H_g denote the closed 3-manifold obtained as the connected sum of g copies of S^2 \times S^1, with free fundamental group of rank g. We prove that, for a finite group G acting on H_g which induces a faithful action on the fundamental group, there is an upper bound for the order of G which is quadratic in g, but that there does not exist a linear bound in g. This implies then a Jordan-type bound for arbitrary finite group actions on H_g which is quadratic in g. For the proofs we develop a calculus for finite group-actions on H_g, by codifying such actions by handle-orbifolds and finite graphs of finite groups.

On finite groups acting on a connected sum of 3-manifolds S^2 \times S^1

ZIMMERMANN, BRUNO
2014-01-01

Abstract

Let H_g denote the closed 3-manifold obtained as the connected sum of g copies of S^2 \times S^1, with free fundamental group of rank g. We prove that, for a finite group G acting on H_g which induces a faithful action on the fundamental group, there is an upper bound for the order of G which is quadratic in g, but that there does not exist a linear bound in g. This implies then a Jordan-type bound for arbitrary finite group actions on H_g which is quadratic in g. For the proofs we develop a calculus for finite group-actions on H_g, by codifying such actions by handle-orbifolds and finite graphs of finite groups.
File in questo prodotto:
File Dimensione Formato  
11368 2834068_Zimmermann_On finite groups acting on a connected sum of 3.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 293 kB
Formato Adobe PDF
293 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2834068
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact