Surrogate models are used to approximate complex problems in order to reduce the final cost of the design process. This study has evaluated the potential for employing surrogate modelling methods in turbo-machinery component design optimization. Specifically four types of surrogate models are assessed and compared, namely: neural networks, Radial Basis Function (RBF) Networks, polynomial models and Kriging models. Guidelines and automated setting procedures are proposed to set the surrogate models, which are applied to two turbo-machinery application case studies.

Evaluation of Surrogate Modelling Methods for Turbo-Machinery Component Design Optimization

BADJAN, GIANLUCA;POLONI, CARLO;
2015-01-01

Abstract

Surrogate models are used to approximate complex problems in order to reduce the final cost of the design process. This study has evaluated the potential for employing surrogate modelling methods in turbo-machinery component design optimization. Specifically four types of surrogate models are assessed and compared, namely: neural networks, Radial Basis Function (RBF) Networks, polynomial models and Kriging models. Guidelines and automated setting procedures are proposed to set the surrogate models, which are applied to two turbo-machinery application case studies.
2015
9783319115412
File in questo prodotto:
File Dimensione Formato  
G_BADJAN-C_POLONI-A_PIKE-N_INCE-Eurogen_Article.pdf

Accesso chiuso

Descrizione: PDF post print
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Badjan_Ince_poloni.pdf

Accesso chiuso

Descrizione: pdf editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2834266
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact