We review the data concerning the neurophysiology of deep brain stimulation (DBS) in humans, especially in reference to Parkinson's disease. The electric field generated by DBS interacts with the brain in complex ways, and several variables could influence the DBS-induced biophysical and clinical effects. The neurophysiology of DBS comprises the DBS-induced effects per se as well as neurophysiological studies designed to record electrical activity directly from the basal ganglia (single-unit or local field potential) through the electrodes implanted for DBS. In the subthalamic nucleus, DBS locally excites and concurrently inhibits at single-unit level, synchronizes low-frequency activity, and desynchronizes beta activity and also induces neurochemical changes in cyclic guanosine monophosphate (cGMP) and GABA concentrations. DBS-induced effects at system level can be studied through evoked potentials, autonomic tests, spinal cord segmental system, motor cortical and brainstem excitability, gait, and decision-making tasks. All these variables are influenced by DBS, suggesting also distant effects on nonmotor structures of the brain. Last, advances in understanding the neurophysiological mechanisms underlying DBS led researchers to develop a new adaptive DBS technology designed to adapt stimulation settings to the individual patient's clinical condition through a closed-loop system controlled by signals from the basal ganglia

Neurophysiology of Deep Brain Stimulation

MARCEGLIA, SARA RENATA FRANCESCA;
2012

Abstract

We review the data concerning the neurophysiology of deep brain stimulation (DBS) in humans, especially in reference to Parkinson's disease. The electric field generated by DBS interacts with the brain in complex ways, and several variables could influence the DBS-induced biophysical and clinical effects. The neurophysiology of DBS comprises the DBS-induced effects per se as well as neurophysiological studies designed to record electrical activity directly from the basal ganglia (single-unit or local field potential) through the electrodes implanted for DBS. In the subthalamic nucleus, DBS locally excites and concurrently inhibits at single-unit level, synchronizes low-frequency activity, and desynchronizes beta activity and also induces neurochemical changes in cyclic guanosine monophosphate (cGMP) and GABA concentrations. DBS-induced effects at system level can be studied through evoked potentials, autonomic tests, spinal cord segmental system, motor cortical and brainstem excitability, gait, and decision-making tasks. All these variables are influenced by DBS, suggesting also distant effects on nonmotor structures of the brain. Last, advances in understanding the neurophysiological mechanisms underlying DBS led researchers to develop a new adaptive DBS technology designed to adapt stimulation settings to the individual patient's clinical condition through a closed-loop system controlled by signals from the basal ganglia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2836425
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 34
social impact