In the framework of large-scale linear discrete ill-posed problems, Krylov projection methods represent an essential tool since their development, which dates back to the early 1950’s. In recent years, the use of these methods in a hybrid fashion or to solve Tikhonov regularized problems has received great attention especially for problems involving the restoration of digital images. In this paper we review the fundamental Krylov-Tikhonov techniques based on Lanczos bidiagonalization and the Arnoldi algorithms. Moreover, we study the use of the unsymmetric Lanczos process that, to the best of our knowledge, has just marginally been considered in this setting. Many numerical experiments and comparisons of different methods are presented.
On Krylov projection methods and Tikhonov regularization
NOVATI, PAOLO;
2015-01-01
Abstract
In the framework of large-scale linear discrete ill-posed problems, Krylov projection methods represent an essential tool since their development, which dates back to the early 1950’s. In recent years, the use of these methods in a hybrid fashion or to solve Tikhonov regularized problems has received great attention especially for problems involving the restoration of digital images. In this paper we review the fundamental Krylov-Tikhonov techniques based on Lanczos bidiagonalization and the Arnoldi algorithms. Moreover, we study the use of the unsymmetric Lanczos process that, to the best of our knowledge, has just marginally been considered in this setting. Many numerical experiments and comparisons of different methods are presented.File | Dimensione | Formato | |
---|---|---|---|
etna15.pdf
Accesso chiuso
Descrizione: Articolo
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.