In this paper we consider the numerical solution of fractional differential equations by means of m-step recursions. The construction of such formulas can be obtained in many ways. Here we study a technique based on the rational approximation of the generating functions of fractional backward differentiation formulas (FBDFs). Accurate approximations lead to the definition of methods which simulate the underlying FBDF, with important computational advantages. Numerical experiments are presented.

On the construction and properties of m-step methods for FDEs

NOVATI, PAOLO
2015-01-01

Abstract

In this paper we consider the numerical solution of fractional differential equations by means of m-step recursions. The construction of such formulas can be obtained in many ways. Here we study a technique based on the rational approximation of the generating functions of fractional backward differentiation formulas (FBDFs). Accurate approximations lead to the definition of methods which simulate the underlying FBDF, with important computational advantages. Numerical experiments are presented.
File in questo prodotto:
File Dimensione Formato  
sisc15.pdf

Accesso chiuso

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 451.46 kB
Formato Adobe PDF
451.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
sisc_rev_3.pdf

accesso aperto

Descrizione: post print
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 560.39 kB
Formato Adobe PDF
560.39 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2837022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact