Three new 1,4-phenylenediacrylate bridged Mn(II) and Co(II) complexes of molecular formulas {[Mn2(ppda)(phen)4(H2O)2](ppda)2(H2O)} (1), {[Co(ppda)- (dpyo)(H2O)3]·4(H2O)}n (2), and {[Co(ppda)(bpe)]·(0.5H2O)}n (3) [ppda = 1,4- phenylenediacrylate; phen = 1,10-phenanthroline; dpyo = 4,4′-dipyridyl N,N′-dioxide; bpe = 1,2-bis(4-pyridyl)ethane] have been synthesized and characterized by elemental analysis, IR spectra, single-crystal X-ray diffraction studies, and low-temperature magnetic measurements. The structural determination reveals that complex 1 is a discrete dinuclear species, 2 is a 1D polymeric chain, while 3 is a three-fold interpenetrated α-polonium network. Hydrogen-bonding interactions, formed by coordinated and/or lattice water molecules with ppda oxygen and π−π stacking interactions of aromatic rings, lead to a 3D supramolecular architecture in both complexes 1 and 2. Low-temperature magnetic study shows antiferromagnetic coupling in all the complexes. In addition, their electronic and fluorescent spectral properties have been investigated.
Syntheses, crystal structures, and magnetic properties of metal-organic hybrid materials of Mn(II)/Co(II): Three-fold interpenetrated α-polonium-like network in one of them
ZANGRANDO, ENNIO;
2014-01-01
Abstract
Three new 1,4-phenylenediacrylate bridged Mn(II) and Co(II) complexes of molecular formulas {[Mn2(ppda)(phen)4(H2O)2](ppda)2(H2O)} (1), {[Co(ppda)- (dpyo)(H2O)3]·4(H2O)}n (2), and {[Co(ppda)(bpe)]·(0.5H2O)}n (3) [ppda = 1,4- phenylenediacrylate; phen = 1,10-phenanthroline; dpyo = 4,4′-dipyridyl N,N′-dioxide; bpe = 1,2-bis(4-pyridyl)ethane] have been synthesized and characterized by elemental analysis, IR spectra, single-crystal X-ray diffraction studies, and low-temperature magnetic measurements. The structural determination reveals that complex 1 is a discrete dinuclear species, 2 is a 1D polymeric chain, while 3 is a three-fold interpenetrated α-polonium network. Hydrogen-bonding interactions, formed by coordinated and/or lattice water molecules with ppda oxygen and π−π stacking interactions of aromatic rings, lead to a 3D supramolecular architecture in both complexes 1 and 2. Low-temperature magnetic study shows antiferromagnetic coupling in all the complexes. In addition, their electronic and fluorescent spectral properties have been investigated.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.