A multiwalled carbon nanotube (MWCNT) scaffold was covalently functionalized with phenanthroline moieties capable to chelate tris Eu(III) complexes, such as Eu(III) tris-(2-theonyl)-trifluoroacetonate ([EuL 3]), yielding a brightly luminescent hybrid (MWCNTs- Phen•[EuL3]). The material was thoroughly characterized by means of TGA, XPS, TEM and steady-state UV-Vis absorption and emission investigations. These studies demonstrated both the integrity of the luminescent Eu(III)-based complex in the hybrid, as well as its high loading. The versatility of the coordinating properties of phenanthroline allowed the anchoring of other lanthanides like Gd(III), producing functional hybrids with potential applicability as magnetic resonance agents. Finally, the developed hybrid revealed to be highly dispersible in biodegradable polymer matrices such as Poly(l-lactide) (PLLA), making it a promising luminophore for applications in biomaterial science. © 2013 Elsevier Ltd. All rights reserved.

Phenanthroline-functionalized MWCNTs as versatile platform for lanthanides complexation

BONIFAZI, DAVIDE
2014-01-01

Abstract

A multiwalled carbon nanotube (MWCNT) scaffold was covalently functionalized with phenanthroline moieties capable to chelate tris Eu(III) complexes, such as Eu(III) tris-(2-theonyl)-trifluoroacetonate ([EuL 3]), yielding a brightly luminescent hybrid (MWCNTs- Phen•[EuL3]). The material was thoroughly characterized by means of TGA, XPS, TEM and steady-state UV-Vis absorption and emission investigations. These studies demonstrated both the integrity of the luminescent Eu(III)-based complex in the hybrid, as well as its high loading. The versatility of the coordinating properties of phenanthroline allowed the anchoring of other lanthanides like Gd(III), producing functional hybrids with potential applicability as magnetic resonance agents. Finally, the developed hybrid revealed to be highly dispersible in biodegradable polymer matrices such as Poly(l-lactide) (PLLA), making it a promising luminophore for applications in biomaterial science. © 2013 Elsevier Ltd. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2837330
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact