STAT3 is a key element inmany oncogenic pathways and, like other transcriptionfactors, is an attractive target for development of novel anticancer drugs. However, interfering with STAT3 functions has been a difficult task and very fewsmallmolecule inhibitors havemade theirway to the clinic. OPB-31121, an anticancer compound currently in clinical trials, has been reported to affect STAT3 signaling, although its mechanism of action has not been unequivocally demonstrated. In this study, we used a combined computational and experimental approach to investigate the molecular target and the mode of interaction of OPB-31121 with STAT3. In parallel, similar studies were performed with known STAT3 inhibitors (STAT3i) to validate our approach. Computational docking and molecular dynamics simulation (MDS) showed that OPB-31121 interacted with high affinity with the SH2 domain of STAT3. Interestingly, there was no overlap of the OPB-31121 binding site with those of the other STAT3i. Computational predictions were confirmed by in vitro binding assays and competition experiments alongwith site-directedmutagenesis of critical residues in the STAT3 SH2 domain. Isothermal titration calorimetry experiments demonstrated the remarkably high affinity ofOPB-31121 for STAT3 with Kd (10 nM) 2e3 orders lower than other STAT3i. Notably, a similar ranking of the potency of the compoundswas observed in terms of inhibition of STAT3phosphorylation, cancer cell proliferation and clonogenicity. These results suggest that the highaffinity and efficacy of OPB-31121 might be related to the unique features and mode of interaction of OPB-31121 with STAT3. These unique characteristics make OPB-31121 a promising candidate for further development and an interesting lead for designing new,more effective STAT3i.
Titolo: | Hitting the right spot: Mechanism of action of OPB-31121, a novel and potent inhibitor of the Signal Transducer and Activator of Transcription 3 (STAT3) |
Autori: | |
Data di pubblicazione: | 2015 |
Rivista: | |
Abstract: | STAT3 is a key element inmany oncogenic pathways and, like other transcriptionfactors, is an attractive target for development of novel anticancer drugs. However, interfering with STAT3 functions has been a difficult task and very fewsmallmolecule inhibitors havemade theirway to the clinic. OPB-31121, an anticancer compound currently in clinical trials, has been reported to affect STAT3 signaling, although its mechanism of action has not been unequivocally demonstrated. In this study, we used a combined computational and experimental approach to investigate the molecular target and the mode of interaction of OPB-31121 with STAT3. In parallel, similar studies were performed with known STAT3 inhibitors (STAT3i) to validate our approach. Computational docking and molecular dynamics simulation (MDS) showed that OPB-31121 interacted with high affinity with the SH2 domain of STAT3. Interestingly, there was no overlap of the OPB-31121 binding site with those of the other STAT3i. Computational predictions were confirmed by in vitro binding assays and competition experiments alongwith site-directedmutagenesis of critical residues in the STAT3 SH2 domain. Isothermal titration calorimetry experiments demonstrated the remarkably high affinity ofOPB-31121 for STAT3 with Kd (10 nM) 2e3 orders lower than other STAT3i. Notably, a similar ranking of the potency of the compoundswas observed in terms of inhibition of STAT3phosphorylation, cancer cell proliferation and clonogenicity. These results suggest that the highaffinity and efficacy of OPB-31121 might be related to the unique features and mode of interaction of OPB-31121 with STAT3. These unique characteristics make OPB-31121 a promising candidate for further development and an interesting lead for designing new,more effective STAT3i. |
Handle: | http://hdl.handle.net/11368/2838071 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.molonc.2015.02.012 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
1-s2.0-S1574789115000484-main.pdf | pdf editoriale | Documento in Versione Editoriale | Digital Rights Management non definito | Administrator Richiedi una copia |
MOLONC-D-14-00964 (1).pdf | pdf post print | Bozza finale post-referaggio (post-print) | Digital Rights Management non definito | Open Access Visualizza/Apri |