We prove a formula computing the Gromov-Witten invariants of genus zero with three marked points of the resolution of the transversal A3- singularity of the weighted projective space P(1, 3, 4, 4) using the theory of deformations of surfaces with An-singularities. We use this result to check Ruan’s conjecture for the stack P(1,3,4,4).
Titolo: | Computing certain Gromov-Witten invariants of the crepant resolution of P(1,3,4,4) | |
Autori: | ||
Data di pubblicazione: | 2011 | |
Rivista: | ||
Abstract: | We prove a formula computing the Gromov-Witten invariants of genus zero with three marked points of the resolution of the transversal A3- singularity of the weighted projective space P(1, 3, 4, 4) using the theory of deformations of surfaces with An-singularities. We use this result to check Ruan’s conjecture for the stack P(1,3,4,4). | |
Handle: | http://hdl.handle.net/11368/2840443 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1215/00277630-2010-015 | |
URL: | http://projecteuclid.org/euclid.nmj/1297433732#info | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.