In this paper we introduce a new invariant for the action of a finite group G on a compact complex curve of genus g. With the aid of this invariant we achieve the classification of the components of the moduli space of curves with an effective action by the dihedral group Dn. This invariant has been used in the meanwhile by the authors in order to extend the genus stabilization result of Livingston and Dunfield and Thurston to the ramified case. This new version contains an appendix clarifying the correspondence between the above components and the image loci in the moduli space M_g (classifying when two such components have the same image).

The irreducible components of the moduli space of dihedral covers of algebraic curves

PERRONI, FABIO
2015

Abstract

In this paper we introduce a new invariant for the action of a finite group G on a compact complex curve of genus g. With the aid of this invariant we achieve the classification of the components of the moduli space of curves with an effective action by the dihedral group Dn. This invariant has been used in the meanwhile by the authors in order to extend the genus stabilization result of Livingston and Dunfield and Thurston to the ramified case. This new version contains an appendix clarifying the correspondence between the above components and the image loci in the moduli space M_g (classifying when two such components have the same image).
Pubblicato
http://www.ems-ph.org/journals/show_abstract.php?issn=1661-7207&vol=9&iss=4&rank=6
File in questo prodotto:
File Dimensione Formato  
CLP_GGD2015.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 342.65 kB
Formato Adobe PDF
342.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Dihedral-GGD-final.pdf

accesso aperto

Descrizione: post print
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Copyright Editore
Dimensione 432.69 kB
Formato Adobe PDF
432.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2840448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 9
social impact