An undirected graph is commonly represented as a set of vertices and a set of vertex doubletons; but one can also represent each vertex by a finite set so as to ensure that membership mimics, over these vertex-representing sets, the edge relation of the graph. This alternative modelling, applied to connected claw-free graphs, recently gave crucial clues for obtaining simpler proofs of some of their properties (e.g. Hamiltonicity of the square of the graph). This article adds a computer-checked contribution. On the one hand, we discuss our development, by means of the Ref verifier, of two theorems on representing graphs by families of finite sets: a weaker theorem pertains to general graphs, and a stronger one to connected claw-free graphs. Before proving those theorems, we must show that every graph admits an acyclic, weakly extensional orientation, which becomes fully extensional when connectivity and claw-freeness are met. This preliminary work enables injective decoration, à la Mostowski, of the vertices by the sought-for finite sets. By this new scenario, we complement our earlier formalization with Ref of two classical properties of connected claw-free graphs. On the other hand, our present work provides another example of the ease with which graph-theoretic results are proved with the Ref verifier. For example, we managed to define and exploit the notion of connected graph without resorting to the notion of path.

### Set Graphs. V. On representing graphs as membership digraphs

#### Abstract

An undirected graph is commonly represented as a set of vertices and a set of vertex doubletons; but one can also represent each vertex by a finite set so as to ensure that membership mimics, over these vertex-representing sets, the edge relation of the graph. This alternative modelling, applied to connected claw-free graphs, recently gave crucial clues for obtaining simpler proofs of some of their properties (e.g. Hamiltonicity of the square of the graph). This article adds a computer-checked contribution. On the one hand, we discuss our development, by means of the Ref verifier, of two theorems on representing graphs by families of finite sets: a weaker theorem pertains to general graphs, and a stronger one to connected claw-free graphs. Before proving those theorems, we must show that every graph admits an acyclic, weakly extensional orientation, which becomes fully extensional when connectivity and claw-freeness are met. This preliminary work enables injective decoration, à la Mostowski, of the vertices by the sought-for finite sets. By this new scenario, we complement our earlier formalization with Ref of two classical properties of connected claw-free graphs. On the other hand, our present work provides another example of the ease with which graph-theoretic results are proved with the Ref verifier. For example, we managed to define and exploit the notion of connected graph without resorting to the notion of path.
##### Scheda breve Scheda completa
2015
13-ott-2014
Pubblicato
File in questo prodotto:
File
exu060.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2.89 MB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11368/2840701`