It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ωR×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.
Optimal profiles in a phase-transition model with a saturating flux
OBERSNEL, Franco
2015-01-01
Abstract
It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ωR×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BoObNLA2015.pdf
Accesso chiuso
Descrizione: Articolo
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
748.84 kB
Formato
Adobe PDF
|
748.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Optimal_profiles13 copia.pdf
Open Access dal 02/09/2017
Descrizione: Articolo
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
429.93 kB
Formato
Adobe PDF
|
429.93 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.