It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ωR×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.

Optimal profiles in a phase-transition model with a saturating flux

OBERSNEL, Franco
2015

Abstract

It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ωR×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.
Pubblicato
https://www.sciencedirect.com/science/article/pii/S0362546X15001807
File in questo prodotto:
File Dimensione Formato  
BoObNLA2015.pdf

non disponibili

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 748.84 kB
Formato Adobe PDF
748.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Optimal_profiles13 copia.pdf

embargo fino al 01/09/2017

Descrizione: Articolo
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 429.93 kB
Formato Adobe PDF
429.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2841161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact