It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ωR×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.
Titolo: | Optimal profiles in a phase-transition model with a saturating flux | |
Autori: | ||
Data di pubblicazione: | 2015 | |
Stato di pubblicazione: | Pubblicato | |
Rivista: | ||
Abstract: | It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ωR×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces. | |
Handle: | http://hdl.handle.net/11368/2841161 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.na.2015.05.027 | |
URL: | https://www.sciencedirect.com/science/article/pii/S0362546X15001807 | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
BoObNLA2015.pdf | Articolo | Documento in Versione Editoriale | Copyright Editore | Administrator Richiedi una copia |
Optimal_profiles13 copia.pdf | Articolo | Bozza finale post-referaggio (post-print) | ![]() | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.