We have developed a technique to create 50 μm-deep microwells coated with a reactive and robust thin film, which withstands photolithographic processing, and allows for subsequent chemical functionalisation with biological cues (i.e. peptides). First, plasma polymerisation of 1-bromopropane was used to generate a bromine-functionalised thin film (BrPP) on a substrate of silicon wafer. Second, an epoxy functionalised polymer UV photoresist, SU-8, was deposited and developed to create 50 μm-deep patterned microwells that display the BrPP coating at their base. Third, amino acids or peptides were selectively attached to the bottom of the microwells through bromine displacement by an amine or thiol nucleophile. Each surface functionalisation step was monitored by XPS, AFM, and contact angle measurements. These functionalities were then used as linkers to immobilise enzymes (e.g. HRP), which retain activity at the end of the process as shown by a biochemical activity assay. Peptide promoters of cell attachment were also immobilised and their functionality was evaluated using an L929 fibroblast adhesion assay. In conclusion, this work describes an innovative combination of plasma thin film deposition and photolithography to create 50 μm-deep functionalised microwells for peptide display in biological applications.

SU-8 photolithography on reactive plasma thin-films: Coated microwells for peptide display

MARCHESAN, SILVIA;
2013

Abstract

We have developed a technique to create 50 μm-deep microwells coated with a reactive and robust thin film, which withstands photolithographic processing, and allows for subsequent chemical functionalisation with biological cues (i.e. peptides). First, plasma polymerisation of 1-bromopropane was used to generate a bromine-functionalised thin film (BrPP) on a substrate of silicon wafer. Second, an epoxy functionalised polymer UV photoresist, SU-8, was deposited and developed to create 50 μm-deep patterned microwells that display the BrPP coating at their base. Third, amino acids or peptides were selectively attached to the bottom of the microwells through bromine displacement by an amine or thiol nucleophile. Each surface functionalisation step was monitored by XPS, AFM, and contact angle measurements. These functionalities were then used as linkers to immobilise enzymes (e.g. HRP), which retain activity at the end of the process as shown by a biochemical activity assay. Peptide promoters of cell attachment were also immobilised and their functionality was evaluated using an L929 fibroblast adhesion assay. In conclusion, this work describes an innovative combination of plasma thin film deposition and photolithography to create 50 μm-deep functionalised microwells for peptide display in biological applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2841339
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact