We consider sigma-harmonic mappings, that is mappings U whose components u_i solve a divergence structure elliptic equation sigma nabla u_i=0, for i=1,... ,n. We investigate whether, with suitably prescribed Dirichlet data, the Jacobian determinant can be bounded away from zero. Results of this sort are required in the treatment of the so-called hybrid inverse problems, and also in the field of homogenization studying bounds for the effective properties of composite materials.
Titolo: | Quantitative Estimates on Jacobians for Hybrid Inverse Problems | |
Autori: | ||
Data di pubblicazione: | 2015 | |
Data ahead of print: | ago-2015 | |
Stato di pubblicazione: | Pubblicato | |
Rivista: | ||
Abstract: | We consider sigma-harmonic mappings, that is mappings U whose components u_i solve a divergence structure elliptic equation sigma nabla u_i=0, for i=1,... ,n. We investigate whether, with suitably prescribed Dirichlet data, the Jacobian determinant can be bounded away from zero. Results of this sort are required in the treatment of the so-called hybrid inverse problems, and also in the field of homogenization studying bounds for the effective properties of composite materials. | |
Handle: | http://hdl.handle.net/11368/2844494 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.14529/mmp150302 | |
URL: | http://mmp.vestnik.susu.ac.ru/article/en/346 | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
90vestnik.pdf | articolo in file unico | Documento in Versione Editoriale | Digital Rights Management non definito | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.