We consider sigma-harmonic mappings, that is mappings U whose components u_i solve a divergence structure elliptic equation sigma nabla u_i=0, for i=1,... ,n. We investigate whether, with suitably prescribed Dirichlet data, the Jacobian determinant can be bounded away from zero. Results of this sort are required in the treatment of the so-called hybrid inverse problems, and also in the field of homogenization studying bounds for the effective properties of composite materials.

Quantitative Estimates on Jacobians for Hybrid Inverse Problems

ALESSANDRINI, GIOVANNI;
2015

Abstract

We consider sigma-harmonic mappings, that is mappings U whose components u_i solve a divergence structure elliptic equation sigma nabla u_i=0, for i=1,... ,n. We investigate whether, with suitably prescribed Dirichlet data, the Jacobian determinant can be bounded away from zero. Results of this sort are required in the treatment of the so-called hybrid inverse problems, and also in the field of homogenization studying bounds for the effective properties of composite materials.
ago-2015
Pubblicato
http://mmp.vestnik.susu.ac.ru/article/en/346
File in questo prodotto:
File Dimensione Formato  
90vestnik.pdf

non disponibili

Descrizione: articolo in file unico
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 458.1 kB
Formato Adobe PDF
458.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2844494
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact