Mevalonate kinase deficiency is a rare disease whose worst manifestation, characterised by severe neurologic impairment, is called mevalonic aciduria. The progressive neuronal loss associated to cell death can be studied in vitro with a simplified model based on a biochemical block of the mevalonate pathway and a subsequent inflammatory trigger. The aim of this study was to evaluate the effect of the mevalonate blocking on glial cells (BV-2) and the following effects on neuronal cells (SH-SY5Y) when the two populations were cultured together. To better understand the cross-talk between glial and neuronal cells, as it happens in vivo, BV-2 and SH-SY5Y were co-cultured in different experimental settings (alone, transwell, direct contact); the effect of mevalonate pathway biochemical block by Lovastatin, followed by LPS inflammatory trigger, were evaluated by analysing programmed cell death and mitochondrial membrane potential, cytokines' release and cells' morphology modifications. In this experimental condition, glial cells underwent an evident activation, confirmed by elevated pro-inflammatory cytokines release, typical of these disorders, and a modification in morphology. Moreover, the activation induced an increase in apoptosis. When glial cells were co-cultured with neurons, their activation caused an increase of programmed cell death also in neuronal cells, but only if the two populations were cultured in direct contact. Our findings, being aware of the limitations related to the cell models used, represent a preliminary step towards understanding the pathological and neuroinflammatory mechanisms occurring in mevalonate kinase diseases. Contact co-culture between neuronal and microglial cells seems to be a good model to study mevalonic aciduria in vitro, and to contribute to the identification of potential drugs able to block microglial activation for this orphan disease. In fact, in such a pathological condition, we demonstrated that microglial cells are activated and contribute to neuronal cell death. We can thus hypothesise that the use of microglial activation blockers could prevent this additional neuronal death.
Microglia activation and interaction with neuronal cells in a biochemical model of mevalonate kinase deficiency
TRICARICO, PAOLA MAURA;PISCIANZ, ELISA;KLEINER, GIULIO;CROVELLA, SERGIO;MARCUZZI, ANNALISA
2015-01-01
Abstract
Mevalonate kinase deficiency is a rare disease whose worst manifestation, characterised by severe neurologic impairment, is called mevalonic aciduria. The progressive neuronal loss associated to cell death can be studied in vitro with a simplified model based on a biochemical block of the mevalonate pathway and a subsequent inflammatory trigger. The aim of this study was to evaluate the effect of the mevalonate blocking on glial cells (BV-2) and the following effects on neuronal cells (SH-SY5Y) when the two populations were cultured together. To better understand the cross-talk between glial and neuronal cells, as it happens in vivo, BV-2 and SH-SY5Y were co-cultured in different experimental settings (alone, transwell, direct contact); the effect of mevalonate pathway biochemical block by Lovastatin, followed by LPS inflammatory trigger, were evaluated by analysing programmed cell death and mitochondrial membrane potential, cytokines' release and cells' morphology modifications. In this experimental condition, glial cells underwent an evident activation, confirmed by elevated pro-inflammatory cytokines release, typical of these disorders, and a modification in morphology. Moreover, the activation induced an increase in apoptosis. When glial cells were co-cultured with neurons, their activation caused an increase of programmed cell death also in neuronal cells, but only if the two populations were cultured in direct contact. Our findings, being aware of the limitations related to the cell models used, represent a preliminary step towards understanding the pathological and neuroinflammatory mechanisms occurring in mevalonate kinase diseases. Contact co-culture between neuronal and microglial cells seems to be a good model to study mevalonic aciduria in vitro, and to contribute to the identification of potential drugs able to block microglial activation for this orphan disease. In fact, in such a pathological condition, we demonstrated that microglial cells are activated and contribute to neuronal cell death. We can thus hypothesise that the use of microglial activation blockers could prevent this additional neuronal death.File | Dimensione | Formato | |
---|---|---|---|
Microglia activation and interaction with neuronal cells.pdf
Accesso chiuso
Descrizione: pdf editoriale
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
705.38 kB
Formato
Adobe PDF
|
705.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.