The B-box family is an expanding new family of genes encoding proteins involved in diverse cellular functions such as developmental patterning and oncogenesis. A member of this protein family, MID1, is the gene responsible for the X-linked form of Opitz G/BBB syndrome, a developmental disorder characterized by defects of the midline structures. We now report the identification of MID2, a new transcript closely related to MID1. MID2 maps to Xq22 in human and to the syntenic region on the mouse X chromosome. The two X-linked genes share the same domains, the same exon-intron organization, a high degree of similarity at the protein level and the same subcellular localization, both being confined to the cytoplasm in association to micro-tubular structures. The expression pattern studied by RNA in situ hybridization in mouse revealed that Mid2 is expressed early in development and the highest level of expression is detected in the heart, unlike Mid1 for which no expression was detected in the developing heart. Together, these data suggest that midin and MID2 have a similar biochemical function but a different physiological role during development.

MID2, a homologue of the Opitz syndrome gene MID1: similarities in subcellular localization and differences in expression during development

MERONI, GERMANA;
1999-01-01

Abstract

The B-box family is an expanding new family of genes encoding proteins involved in diverse cellular functions such as developmental patterning and oncogenesis. A member of this protein family, MID1, is the gene responsible for the X-linked form of Opitz G/BBB syndrome, a developmental disorder characterized by defects of the midline structures. We now report the identification of MID2, a new transcript closely related to MID1. MID2 maps to Xq22 in human and to the syntenic region on the mouse X chromosome. The two X-linked genes share the same domains, the same exon-intron organization, a high degree of similarity at the protein level and the same subcellular localization, both being confined to the cytoplasm in association to micro-tubular structures. The expression pattern studied by RNA in situ hybridization in mouse revealed that Mid2 is expressed early in development and the highest level of expression is detected in the heart, unlike Mid1 for which no expression was detected in the developing heart. Together, these data suggest that midin and MID2 have a similar biochemical function but a different physiological role during development.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2847748
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 55
social impact