Short peptides offer a cheap alternative to antibodies for developing sensing units in devices for concentration measurement. We here describe a computational procedure that allows designing peptides capable of binding with high affinity a target organic molecule in aqueous or nonstandard solvent environments. The algorithm is based on a stochastic search in the space of the possible sequences of the peptide, and exploits finite temperature molecular dynamics simulations in explicit solvent to check if a proposed mutation improves the binding affinity or not. The procedure automatically produces peptides which form thermally stable complexes with the target. The estimated binding free energy reaches the 13 kcal/mol for Irinotecan anticancer drug, the target considered in this work. These peptides are by construction solvent specific; namely, they recognize the target only in the solvent in which they have been designed. This feature of the algorithm calls for applications in devices in which the peptide-based sensor is required to work in denaturants or under extreme conditions of pressure and temperature.
Designing High-Affinity Peptides for Organic Molecules by Explicit Solvent Molecular Dynamics
GLADICH, IVAN;HONG ENRIQUEZ, Rolando Pablo;GUIDA, FILOMENA;BERTI, FEDERICO;
2015-01-01
Abstract
Short peptides offer a cheap alternative to antibodies for developing sensing units in devices for concentration measurement. We here describe a computational procedure that allows designing peptides capable of binding with high affinity a target organic molecule in aqueous or nonstandard solvent environments. The algorithm is based on a stochastic search in the space of the possible sequences of the peptide, and exploits finite temperature molecular dynamics simulations in explicit solvent to check if a proposed mutation improves the binding affinity or not. The procedure automatically produces peptides which form thermally stable complexes with the target. The estimated binding free energy reaches the 13 kcal/mol for Irinotecan anticancer drug, the target considered in this work. These peptides are by construction solvent specific; namely, they recognize the target only in the solvent in which they have been designed. This feature of the algorithm calls for applications in devices in which the peptide-based sensor is required to work in denaturants or under extreme conditions of pressure and temperature.File | Dimensione | Formato | |
---|---|---|---|
Designing High-Affinity Peptides for Organic Molecules by Explicit Solvent Molecular Dynamics.pdf
Accesso chiuso
Descrizione: pdf editoriale
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
1.99 MB
Formato
Adobe PDF
|
1.99 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
proof-2.pdf
Open Access dal 24/09/2016
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
2.09 MB
Formato
Adobe PDF
|
2.09 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.