OBJECTIVES: The study sought to discover the key determinants of exercise capacity, maximal oxygen consumption (oxygen uptake [Vo2]), and ventilatory efficiency (ventilation/carbon dioxide output [VE/Vco2] slope) and assess the prognostic potential of metabolic exercise testing in hypertrophic cardiomyopathy (HCM). BACKGROUND: The intrinsic mechanisms leading to reduced functional tolerance in HCM are unclear. METHODS: The study sample included 156 HCM patients consecutively enrolled from 2007 to 2012 with a complete clinical assessment, including rest and stress echocardiography and cardiopulmonary exercise test (CPET) with impedance cardiography. Patients were also followed for the composite outcome of cardiac-related death, heart transplant, and functional deterioration leading to septal reduction therapy (myectomy or septal alcohol ablation). RESULTS: Abnormalities in CPET responses were frequent, with 39% (n = 61) of the sample showing a reduced exercise tolerance (Vo2 max <80% of predicted) and 19% (n = 30) characterized by impaired ventilatory efficiency (VE/Vco2 slope >34). The variables most strongly associated with exercise capacity (expressed in metabolic equivalents), were peak cardiac index (r = 0.51, p < 0.001), age (r = -0.25, p < 0.01), male sex (r = 0.24, p = 0.02), and indexed right ventricular end-diastolic area (r = 0.31, p = 0.002), resulting in an R2 of 0.51, p < 0.001. Peak cardiac index was the main predictor of peak Vo2 (r = 0.61, p < 0.001). The variables most strongly related to VE/VCO2 slope were E/E' (r = 0.23, p = 0.021) and indexed left atrial volume (LAVI) (r = 0.34, p = 0.005) (model R2 = 0.15). The composite endpoint occurred in 21 (13%) patients. In an exploratory analysis, 3 variables were independently associated with the composite outcome (mean follow-up 27 ± 11 months): peak Vo2 <80% of predicted (hazard ratio: 4.11; 95% confidence interval [CI]: 1.46 to 11.59; p = 0.008), VE/Vco2 slope >34 (hazard ratio: 3.14; 95% CI: 1.26 to 7.87; p = 0.014), and LAVI >40 ml/m2 (hazard ratio: 3.32; 95% CI: 1.08 to 10.16; p = 0.036). CONCLUSIONS: In HCM, peak cardiac index is the main determinant of exercise capacity, but it is not significantly related to ventilatory efficiency. Peak Vo2, ventilatory inefficiency, and LAVI are associated with an increased risk of major events in the short-term follow-up.
Cardiopulmonary Responses and Prognosis in Hypertrophic Cardiomyopathy. A Potential Role for Comprehensive Noninvasive Hemodynamic Assessment
FINOCCHIARO, GHERARDO;SINAGRA, GIANFRANCO;PEREZ, MAURIZIO;
2015-01-01
Abstract
OBJECTIVES: The study sought to discover the key determinants of exercise capacity, maximal oxygen consumption (oxygen uptake [Vo2]), and ventilatory efficiency (ventilation/carbon dioxide output [VE/Vco2] slope) and assess the prognostic potential of metabolic exercise testing in hypertrophic cardiomyopathy (HCM). BACKGROUND: The intrinsic mechanisms leading to reduced functional tolerance in HCM are unclear. METHODS: The study sample included 156 HCM patients consecutively enrolled from 2007 to 2012 with a complete clinical assessment, including rest and stress echocardiography and cardiopulmonary exercise test (CPET) with impedance cardiography. Patients were also followed for the composite outcome of cardiac-related death, heart transplant, and functional deterioration leading to septal reduction therapy (myectomy or septal alcohol ablation). RESULTS: Abnormalities in CPET responses were frequent, with 39% (n = 61) of the sample showing a reduced exercise tolerance (Vo2 max <80% of predicted) and 19% (n = 30) characterized by impaired ventilatory efficiency (VE/Vco2 slope >34). The variables most strongly associated with exercise capacity (expressed in metabolic equivalents), were peak cardiac index (r = 0.51, p < 0.001), age (r = -0.25, p < 0.01), male sex (r = 0.24, p = 0.02), and indexed right ventricular end-diastolic area (r = 0.31, p = 0.002), resulting in an R2 of 0.51, p < 0.001. Peak cardiac index was the main predictor of peak Vo2 (r = 0.61, p < 0.001). The variables most strongly related to VE/VCO2 slope were E/E' (r = 0.23, p = 0.021) and indexed left atrial volume (LAVI) (r = 0.34, p = 0.005) (model R2 = 0.15). The composite endpoint occurred in 21 (13%) patients. In an exploratory analysis, 3 variables were independently associated with the composite outcome (mean follow-up 27 ± 11 months): peak Vo2 <80% of predicted (hazard ratio: 4.11; 95% confidence interval [CI]: 1.46 to 11.59; p = 0.008), VE/Vco2 slope >34 (hazard ratio: 3.14; 95% CI: 1.26 to 7.87; p = 0.014), and LAVI >40 ml/m2 (hazard ratio: 3.32; 95% CI: 1.08 to 10.16; p = 0.036). CONCLUSIONS: In HCM, peak cardiac index is the main determinant of exercise capacity, but it is not significantly related to ventilatory efficiency. Peak Vo2, ventilatory inefficiency, and LAVI are associated with an increased risk of major events in the short-term follow-up.File | Dimensione | Formato | |
---|---|---|---|
Cardiopulmonary Responses and Prognosis in Hypertrophic Cardiomyopathy.pdf
Accesso chiuso
Descrizione: pdf editoriale
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
883.07 kB
Formato
Adobe PDF
|
883.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2853143_Cardiopulmonary Responses and Prognosis in Hypertrophic Cardiomyopathy-PostPrint.pdf
Open Access dal 09/04/2016
Descrizione: Post Print VQR3 - This is an Accepted Manuscript of an article published by Elsevier in JACC: Heart Failure on 8 Apr 2015, available online: https://doi.org/10.1016/j.jchf.2014.11.011
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.