We consider the numerical solution of boundary value problems for neutral differential equations with deviating arguments by the collocation method, which includes the finite element method and the spectral element method. By using the results of Part I [SIAM J. Numer. Anal., 53 (2015), pp. 2771--2793] of this paper, we obtain concrete convergence theorems for this particular type of functional differential equations.

The Collocation Method in the Numerical Solution of Boundary Value Problems for Neutral Functional Differential Equations. Part II: Differential Equations with Deviating Arguments

MASET, STEFANO
2015-01-01

Abstract

We consider the numerical solution of boundary value problems for neutral differential equations with deviating arguments by the collocation method, which includes the finite element method and the spectral element method. By using the results of Part I [SIAM J. Numer. Anal., 53 (2015), pp. 2771--2793] of this paper, we obtain concrete convergence theorems for this particular type of functional differential equations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2855425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact