On the basis of the classical continuous multi-utility representation theorem of Levin on locally compact and $\sigma$-compact Hausdorff spaces, we present necessary and sufficient conditions on a topological space $(X,t)$ under which every semi-closed and closed preorder respectively admits a continuous multi-utility representation. This discussion provides the fundaments of a mainly topological theory that systematically combines topological and order theoretic aspects of the continuous multi-utility representation problem.
On continuous multi-utility representations of semi-closed and closed preorders
BOSI, GIANNI;
2016-01-01
Abstract
On the basis of the classical continuous multi-utility representation theorem of Levin on locally compact and $\sigma$-compact Hausdorff spaces, we present necessary and sufficient conditions on a topological space $(X,t)$ under which every semi-closed and closed preorder respectively admits a continuous multi-utility representation. This discussion provides the fundaments of a mainly topological theory that systematically combines topological and order theoretic aspects of the continuous multi-utility representation problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BosiHerdenContTopmulti.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Digital Rights Management non definito
Dimensione
159.32 kB
Formato
Adobe PDF
|
159.32 kB | Adobe PDF | Visualizza/Apri |
BosiHerdenContTopmultiRevised.pdf
Open Access dal 08/01/2017
Descrizione: Post Print
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
172.27 kB
Formato
Adobe PDF
|
172.27 kB | Adobe PDF | Visualizza/Apri |
Bosi_On continuous multi-utility representations of semi-closed and closed preorders.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
433.88 kB
Formato
Adobe PDF
|
433.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.