INTRODUCTION: Fibroblast growth factors (FGFs) along with their receptors (FGFRs) are involved in several cellular functions, from embryogenesis to metabolism. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival in cancer, these have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. New evidences indicate that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-to-mesenchymal transition, invasion and tumour angiogenesis. This review focuses on the predictive and prognostic role of FGFRs, the role of FGFR signalling and how it may be most appropriately therapeutically targeted in breast cancer. AREAS COVERED: Activation of the FGFR pathway is a common event in many cancer types and for this reason FGFR is an important potential target in cancer treatment. Relevant literature was reviewed to identify current and future role of FGFR family as a possible guide for selecting those patients who would be poor or good responders to the available or the upcoming target therapies for breast cancer treatment. EXPERT OPINION: The success of a personalised medicine approach using targeted therapies ultimately depends on being capable of identifying the patients who will benefit the most from any given drug. Outlining the molecular mechanisms of FGFR signalling and discussing the role of this pathway in breast cancer, we would like to endorse the incorporation of specific patient selection biomakers with the rationale for therapeutic intervention with FGFR-targeted therapy in breast cancer.
Targeting fibroblast growth factor receptor in breast cancer: A promise or a pitfall?
GENERALI, DANIELE
2014-01-01
Abstract
INTRODUCTION: Fibroblast growth factors (FGFs) along with their receptors (FGFRs) are involved in several cellular functions, from embryogenesis to metabolism. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival in cancer, these have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. New evidences indicate that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-to-mesenchymal transition, invasion and tumour angiogenesis. This review focuses on the predictive and prognostic role of FGFRs, the role of FGFR signalling and how it may be most appropriately therapeutically targeted in breast cancer. AREAS COVERED: Activation of the FGFR pathway is a common event in many cancer types and for this reason FGFR is an important potential target in cancer treatment. Relevant literature was reviewed to identify current and future role of FGFR family as a possible guide for selecting those patients who would be poor or good responders to the available or the upcoming target therapies for breast cancer treatment. EXPERT OPINION: The success of a personalised medicine approach using targeted therapies ultimately depends on being capable of identifying the patients who will benefit the most from any given drug. Outlining the molecular mechanisms of FGFR signalling and discussing the role of this pathway in breast cancer, we would like to endorse the incorporation of specific patient selection biomakers with the rationale for therapeutic intervention with FGFR-targeted therapy in breast cancer.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.