We define quantum lens spaces as `direct sums of line bundles' and exhibit them as `total spaces' of certain principal bundles over quantum projective spaces. For each of these quantum lens spaces we construct an analogue of the classical Gysin sequence in K-theory. We use the sequence to compute the K-theory of the quantum lens spaces, in particular to give explicit geometric representatives of their K-theory classes. These representatives are interpreted as `line bundles' over quantum lens spaces and generically define `torsion classes'. We work out explicit examples of these classes.

The Gysin sequence for quantum lens spaces

BRAIN, SIMON JOHN;LANDI, GIOVANNI
2015-01-01

Abstract

We define quantum lens spaces as `direct sums of line bundles' and exhibit them as `total spaces' of certain principal bundles over quantum projective spaces. For each of these quantum lens spaces we construct an analogue of the classical Gysin sequence in K-theory. We use the sequence to compute the K-theory of the quantum lens spaces, in particular to give explicit geometric representatives of their K-theory classes. These representatives are interpreted as `line bundles' over quantum lens spaces and generically define `torsion classes'. We work out explicit examples of these classes.
File in questo prodotto:
File Dimensione Formato  
ABL-JnCG.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 344.42 kB
Formato Adobe PDF
344.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2859946_ABL-JnCG-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 988.31 kB
Formato Adobe PDF
988.31 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2859946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact