OBJECTIVE: Human Hepatocellular Carcinoma (HCC) is the fifth most frequent neoplasm worldwide and the most serious complication of long-standing chronic liver diseases (CLD). Its development is associated with chronic inflammation and sustained oxidative stress. Deregulation of apurinic apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1), a master regulator of cellular response to oxidative stress, has been associated with poor prognosis in several cancers including HCC. DESIGN: In the present study we investigated the APE1/Ref-1 mRNA levels in cirrhotic and HCC tissues obtained during HCC resection. The possible protective role of APE1/Ref-1 against oxidative stress and apoptosis was evaluated in vitro in immortalized human hepatocytes (IHH) over-expressing APE1/Ref-1. RESULTS: APE1/Ref-1 was up-regulated in HCC, regulation occurring at the transcriptional level. APE1/Ref-1 mRNA content increased with the progression of liver disease with the transcriptional up-regulation present in cirrhosis significantly increased in HCC. The up-regulation was higher in the less differentiated cancers. In vitro, over-expression of APE1/Ref-1 in normal hepatocytes conferred cell protection against oxidative stress and it was associated with BAX inhibition and escape from apoptosis. CONCLUSION: APE1/Ref-1 is up-regulated in HCC and this over-expression correlates with cancer aggressiveness. The up-regulation occurs at the transcriptional level and it is present in the earliest phases of hepatocarcinogenesis. The APE-1/Ref-1 over-expression is associated with hepatocyte survival and inhibits BAX activation and apoptosis. These data suggest a possible role of APE1/Ref-1 over-expression both in hepatocyte survival and HCC development calling attention to this molecule as a promising marker for HCC diagnosis and treatment.

Transcriptional Up-Regulation of APE1/Ref-1 in hepatic tumor: Role in hepatocytes resistance to oxidative stress and apoptosis

DI MASO, VITTORIO;TIRIBELLI, CLAUDIO;CROCE', Saveria, Lory
2015-01-01

Abstract

OBJECTIVE: Human Hepatocellular Carcinoma (HCC) is the fifth most frequent neoplasm worldwide and the most serious complication of long-standing chronic liver diseases (CLD). Its development is associated with chronic inflammation and sustained oxidative stress. Deregulation of apurinic apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1), a master regulator of cellular response to oxidative stress, has been associated with poor prognosis in several cancers including HCC. DESIGN: In the present study we investigated the APE1/Ref-1 mRNA levels in cirrhotic and HCC tissues obtained during HCC resection. The possible protective role of APE1/Ref-1 against oxidative stress and apoptosis was evaluated in vitro in immortalized human hepatocytes (IHH) over-expressing APE1/Ref-1. RESULTS: APE1/Ref-1 was up-regulated in HCC, regulation occurring at the transcriptional level. APE1/Ref-1 mRNA content increased with the progression of liver disease with the transcriptional up-regulation present in cirrhosis significantly increased in HCC. The up-regulation was higher in the less differentiated cancers. In vitro, over-expression of APE1/Ref-1 in normal hepatocytes conferred cell protection against oxidative stress and it was associated with BAX inhibition and escape from apoptosis. CONCLUSION: APE1/Ref-1 is up-regulated in HCC and this over-expression correlates with cancer aggressiveness. The up-regulation occurs at the transcriptional level and it is present in the earliest phases of hepatocarcinogenesis. The APE-1/Ref-1 over-expression is associated with hepatocyte survival and inhibits BAX activation and apoptosis. These data suggest a possible role of APE1/Ref-1 over-expression both in hepatocyte survival and HCC development calling attention to this molecule as a promising marker for HCC diagnosis and treatment.
File in questo prodotto:
File Dimensione Formato  
Transcriptional Up-Regulation of APE1-Ref-1 in hepatic tumor. Role in hepatocytes resistance to oxidative stress and apoptosis.PDF

accesso aperto

Descrizione: pdf editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2868186
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 22
social impact