We compute the minimal and the maximal bound on the number of generators of a minimal smooth monomial Togliatti system of forms of degree d in n + 1 variables, for any d ≥ 2 and n ≥ 2. We classify the Togliatti systems with number of generators reaching the lower bound or close to the lower bound. We then prove that if n = 2 (resp n = 2, 3) all range between the lower and upper bound is covered, while if n ≥ 3 (resp. n ≥ 4) there are gaps if we only consider smooth minimal Togliatti systems (resp. if we avoid the smoothness hypothesis). We finally analyze for n = 2 the Mumford–Takemoto stability of the syzygy bundle associated with smooth monomial Togliatti systems.

The minimal number of generators of a Togliatti system

MEZZETTI, EMILIA;
2016-01-01

Abstract

We compute the minimal and the maximal bound on the number of generators of a minimal smooth monomial Togliatti system of forms of degree d in n + 1 variables, for any d ≥ 2 and n ≥ 2. We classify the Togliatti systems with number of generators reaching the lower bound or close to the lower bound. We then prove that if n = 2 (resp n = 2, 3) all range between the lower and upper bound is covered, while if n ≥ 3 (resp. n ≥ 4) there are gaps if we only consider smooth minimal Togliatti systems (resp. if we avoid the smoothness hypothesis). We finally analyze for n = 2 the Mumford–Takemoto stability of the syzygy bundle associated with smooth monomial Togliatti systems.
File in questo prodotto:
File Dimensione Formato  
art_10.1007_s10231-016-0554-y.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 514.54 kB
Formato Adobe PDF
514.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2869366_art_10.1007_s10231-016-0554-y-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 961.49 kB
Formato Adobe PDF
961.49 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2869366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact