Endohedral and exohedral assembly of magnetic nanoparticles (MNPs) and carbon nanotubes (CNTs) recently gave birth to a large body of new hybrid nanomaterials (MNPs-CNTs) featuring properties that are otherwise not in reach with only the graphitic or metallic cores themselves. These materials feature enhanced magnetically guided motions (rotation and translation), magnetic saturation and coercivity, large surface area, and thermal stability. By guiding the reader through the most significant examples in this Concept paper, we describe how researchers in the field engineered and exploited the synergistic combination of these two types of nanoparticles in a large variety of current and potential applications, such as magnetic fluid hyperthermia therapeutics and in magnetic resonance imaging to name a few.

Magnetically-Active Carbon Nanotubes at Work

BONIFAZI, DAVIDE
2015-01-01

Abstract

Endohedral and exohedral assembly of magnetic nanoparticles (MNPs) and carbon nanotubes (CNTs) recently gave birth to a large body of new hybrid nanomaterials (MNPs-CNTs) featuring properties that are otherwise not in reach with only the graphitic or metallic cores themselves. These materials feature enhanced magnetically guided motions (rotation and translation), magnetic saturation and coercivity, large surface area, and thermal stability. By guiding the reader through the most significant examples in this Concept paper, we describe how researchers in the field engineered and exploited the synergistic combination of these two types of nanoparticles in a large variety of current and potential applications, such as magnetic fluid hyperthermia therapeutics and in magnetic resonance imaging to name a few.
File in questo prodotto:
File Dimensione Formato  
Magnetically-Active Carbon Nanotubes at Work.pdf

accesso aperto

Descrizione: Articolo versione editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 5.86 MB
Formato Adobe PDF
5.86 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2869723
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact