We have computed cross sections and asymmetry parameters for the outer- and inner-valence photoionization of ethane using the Schwinger variational method with Pade corrections. The calculated total cross section is found to be in rather good agreement with the available electron-impact and photoabsorption measurements. One-electron resonant processes in the (1e(g))(-1), (3a(1g))(-1), and (2a(1g))(-1) ionization channels were examined comparing resonant states predicted from the virtual orbitals of a minimum basis set self-consistent-field (MBS-SCF) calculations with scattering resonances found using a local model potential for the electron-molecule interaction. The analysis of the interaction potential in terms of adiabatic radial components provides a description of the mechanism of the resonant trapping.
Cross-section and asymmetry-parameter calculations for the outer- and inner-valence photoionization of ethane
TOFFOLI, DANIELE;
2004-01-01
Abstract
We have computed cross sections and asymmetry parameters for the outer- and inner-valence photoionization of ethane using the Schwinger variational method with Pade corrections. The calculated total cross section is found to be in rather good agreement with the available electron-impact and photoabsorption measurements. One-electron resonant processes in the (1e(g))(-1), (3a(1g))(-1), and (2a(1g))(-1) ionization channels were examined comparing resonant states predicted from the virtual orbitals of a minimum basis set self-consistent-field (MBS-SCF) calculations with scattering resonances found using a local model potential for the electron-molecule interaction. The analysis of the interaction potential in terms of adiabatic radial components provides a description of the mechanism of the resonant trapping.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.