Charge transport properties of a vertically stacked organic heterojunction based on the amino-carboxylic (A-C) hydrogen bond coupling scheme are investigated by means of X-ray resonant photoemission and the core-hole clock method. We demonstrate that hydrogen bonding in molecular bilayers of benzoic acid/cysteamine (BA/CA) with an A-C coupling scheme opens a site selective pathway for ultrafast charge transport through the junction. Whereas charge transport from single BA layer directly coupled to the Au(111) is very fast and it is mediated by the phenyl group, the interposition of an anchoring layer of CA selectively hinders the delocalization of electrons from the BA phenyl group but opens a fast charge delocalization route through the BA orbitals close to the A-C bond. This evidences that hydrogen bonding established upon A-C recognition can be exploited to spatially/orbitally manipulate the charge transport properties of heteromolecular junctions.

Ultrafast Charge Transfer Pathways Through A Prototype Amino-Carboxylic Molecular Junction

KLADNIK, GREGOR;PUPPIN, MICHELE;MORGANTE, ALBERTO;Cossaro, Albano
2016-01-01

Abstract

Charge transport properties of a vertically stacked organic heterojunction based on the amino-carboxylic (A-C) hydrogen bond coupling scheme are investigated by means of X-ray resonant photoemission and the core-hole clock method. We demonstrate that hydrogen bonding in molecular bilayers of benzoic acid/cysteamine (BA/CA) with an A-C coupling scheme opens a site selective pathway for ultrafast charge transport through the junction. Whereas charge transport from single BA layer directly coupled to the Au(111) is very fast and it is mediated by the phenyl group, the interposition of an anchoring layer of CA selectively hinders the delocalization of electrons from the BA phenyl group but opens a fast charge delocalization route through the BA orbitals close to the A-C bond. This evidences that hydrogen bonding established upon A-C recognition can be exploited to spatially/orbitally manipulate the charge transport properties of heteromolecular junctions.
File in questo prodotto:
File Dimensione Formato  
Nanolet_ultrafast_Charg_transf_AC.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2870813
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact