Persistent Scatterers Interferometry (PSI) techniques are widely employed in geosciences to detect and monitor landslides with high accuracy over large areas, but they also suffer from physical and technological constraints that restrict their field of application. These limitations prevent us from collecting information from several critical areas within the investigated region. In this paper, we present a novel approach that exploits the results of PSI analysis for the implementation of a statistical model for landslide susceptibility. The attempt is to identify active mass movements by means of PSI and to avoid, as input data, time-/cost-consuming and seldom updated landslide inventories. The study has been performed along the northwestern coast of Malta (central Mediterranean Sea), where the peculiar geological and geomorphological settings favor the occurrence of a series of extensive slow-moving landslides. Most of these consist in rock spreads, evolving into block slides, with large limestone blocks characterized by scarce vegetation and proper inclination, which represent suitable natural radar reflectors for applying PSI. Based on geomorphometric analyses and geomorphological investigations, a series of landslide predisposing factors were selected and a susceptibility map created. The result was validated by means of cross-validation technique, field surveys and global navigation satellite system in situ monitoring activities. The final outcome shows a good reliability and could represent an adequate response to the increasing demand for effective and low-cost tools for landslide susceptibility assessment.

Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta

DEVOTO, STEFANO;
2015-01-01

Abstract

Persistent Scatterers Interferometry (PSI) techniques are widely employed in geosciences to detect and monitor landslides with high accuracy over large areas, but they also suffer from physical and technological constraints that restrict their field of application. These limitations prevent us from collecting information from several critical areas within the investigated region. In this paper, we present a novel approach that exploits the results of PSI analysis for the implementation of a statistical model for landslide susceptibility. The attempt is to identify active mass movements by means of PSI and to avoid, as input data, time-/cost-consuming and seldom updated landslide inventories. The study has been performed along the northwestern coast of Malta (central Mediterranean Sea), where the peculiar geological and geomorphological settings favor the occurrence of a series of extensive slow-moving landslides. Most of these consist in rock spreads, evolving into block slides, with large limestone blocks characterized by scarce vegetation and proper inclination, which represent suitable natural radar reflectors for applying PSI. Based on geomorphometric analyses and geomorphological investigations, a series of landslide predisposing factors were selected and a susceptibility map created. The result was validated by means of cross-validation technique, field surveys and global navigation satellite system in situ monitoring activities. The final outcome shows a good reliability and could represent an adequate response to the increasing demand for effective and low-cost tools for landslide susceptibility assessment.
File in questo prodotto:
File Dimensione Formato  
Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI) an example from the northwestern coast of Malta.pdf

Accesso chiuso

Descrizione: pdf editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 6.77 MB
Formato Adobe PDF
6.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2871128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 56
social impact