Photoelectron diffraction is a well-established technique for structural characterization of solids, based on the interference of the native photoelectron wave with those scattered from the neighboring atoms. For isolated systems in the gas phase similar studies suffer from orders of magnitude lower signals due to the very small sample density. Here we present a detailed study of the vibrationally resolved B 1s photoionization cross section of BF3 molecule. A combination of high-resolution photoelectron spectroscopy measurements and of state-of-the-art static-exchange and time-dependent DFT calculations shows the evolution of the photon energy dependence of the cross section from a complete trapping of the photoelectron wave (low energies) to oscillations due to photoelectron diffraction phenomena. The diffraction pattern allows one to access structural information both for the ground neutral state of the molecule and for the core-ionized cation. Due to a significant change in geometry between the ground and the B 1s1 core-ionized state in the BF3 molecule, several vibrational final states of the cation are populated, allowing investigation of eight different relative vibrationally resolved photoionization cross sections. Effects due to recoil induced by the photoelectron emission are also discussed.

Vibrationally Resolved B 1s Photoionization Cross Section of BF3

DECLEVA, PIETRO;
2015-01-01

Abstract

Photoelectron diffraction is a well-established technique for structural characterization of solids, based on the interference of the native photoelectron wave with those scattered from the neighboring atoms. For isolated systems in the gas phase similar studies suffer from orders of magnitude lower signals due to the very small sample density. Here we present a detailed study of the vibrationally resolved B 1s photoionization cross section of BF3 molecule. A combination of high-resolution photoelectron spectroscopy measurements and of state-of-the-art static-exchange and time-dependent DFT calculations shows the evolution of the photon energy dependence of the cross section from a complete trapping of the photoelectron wave (low energies) to oscillations due to photoelectron diffraction phenomena. The diffraction pattern allows one to access structural information both for the ground neutral state of the molecule and for the core-ionized cation. Due to a significant change in geometry between the ground and the B 1s1 core-ionized state in the BF3 molecule, several vibrational final states of the cation are populated, allowing investigation of eight different relative vibrationally resolved photoionization cross sections. Effects due to recoil induced by the photoelectron emission are also discussed.
File in questo prodotto:
File Dimensione Formato  
Vibrationally Resolved B 1s Photoionization Cross Section of BF3.pdf

Accesso chiuso

Descrizione: pdf articolo pubblicato
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
jp511416h_si_001.pdf

Accesso chiuso

Descrizione: supporting information
Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 296.07 kB
Formato Adobe PDF
296.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2871470
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 14
social impact